[1]唐启涛. 基于改进的遗传算法的智能组卷算法研究[J].计算机技术与发展,2014,24(12):241-244.
 TANG Qi-tao. Research on Intelligent Test Paper Generating Algorithm Based on Improved Genetic Algorithm[J].,2014,24(12):241-244.
点击复制

 基于改进的遗传算法的智能组卷算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年12期
页码:
241-244
栏目:
应用开发研究
出版日期:
2014-12-10

文章信息/Info

Title:
 Research on Intelligent Test Paper Generating Algorithm Based on Improved Genetic Algorithm
文章编号:
1673-629X(2014)12-0241-04
作者:
 唐启涛
 长沙医学院 计算机科学与技术系
Author(s):
 TANG Qi-tao
关键词:
 人工智能考试系统遗传算法自适应
Keywords:
 artificial intelligenceexamination systemgenetic algorithmself-adaption
分类号:
TP301.6
文献标志码:
A
摘要:
 随着人工智能技术在高校信息化过程的不断推广,智能在线考试模式已成为高校教学改革的一种新手段。目前现有的在线考试系统由于一些现实约束,还存在很多不足。文中针对现有的考试系统存在智能组卷后的试卷难度不均衡、题库试题难度系数确定不合理的现象,提出一种基于改进的遗传算法自动组卷策略。利用伯努利大数定律和机器自适应学习方式,确定题库中试题合理的难度系数。在试题的难度系数确定后,试卷的难度系数就是参入组卷的试题的平均难度系数,组卷中,只需指定试卷的平均难度系数和各类题型的数量即可。
Abstract:
 With the continuous promotion of university informatization process of artificial intelligence technology,intelligent online ex-amination mode has become a new way of teaching reform in colleges and universities. At present,the online examination system,because of some realistic constraints,has many deficiencies. In this paper,in view of the phenomenon that the intelligent examination system after the examination is not balanced,and exam difficulty coefficient is unreasonable,put forward a strategy of automatic generating test paper based on improved genetic algorithm. Use the Bernoulli law of large numbers and machine learning methods to determine the reasonable difficulty coefficient of test question database,after determining the difficulty coefficient,the test paper difficulty coefficient is average dif-ficulty coefficient of incorporation test paper,only the designated test average difficulty coefficient and various types of quantity can be.

相似文献/References:

[1]张春飞 李万龙 郑山红.Agent技术在智能教学系统中的应用与研究[J].计算机技术与发展,2009,(05):30.
 ZHANG Chun-fei,LI Wan-long,ZHENG Shan-hong.Application and Research of Agent Technology in Intelligent Tutoring System[J].,2009,(12):30.
[2]黄长专 王彪 杨忠.图像分割方法研究[J].计算机技术与发展,2009,(06):76.
 HUANG Chang-zhuan,WANG Biao,YANG Zhong.A Study on Image Segmentation Techniques[J].,2009,(12):76.
[3]张春飞 郑山红 李万龙.基于Agent技术的医疗信息整合研究[J].计算机技术与发展,2009,(10):250.
 ZHANG Chun-fei,ZHENG Shan-hong,LI Wan-long.Research on Integration of Healthcare Enterprise Based on Agent Technology[J].,2009,(12):250.
[4]杜秀全 程家兴.博弈算法在黑白棋中的应用[J].计算机技术与发展,2007,(01):216.
 DU Xiu-quan,CHENG Jia-xing.Game- Playing Algorithm in Black and White Chess Application[J].,2007,(12):216.
[5]孙锦 冯勤超.创造力支持系统[J].计算机技术与发展,2007,(03):138.
 SUN Jin,FENG Qin-chao.Creativity Support System[J].,2007,(12):138.
[6]吉张媛 何华灿.模糊Prolog系统[J].计算机技术与发展,2006,(02):123.
 JI Zhang-yuan,HE Hua-can.Fuzzy Prolog System[J].,2006,(12):123.
[7]丁莹.研究人工智能的一条新途径[J].计算机技术与发展,2012,(03):133.
 DING Ying.A New Avenue of Researching on AI[J].,2012,(12):133.
[8]张代远[].一类新型改进的广义蚁群优化算法[J].计算机技术与发展,2012,(06):39.
 ZHANG Dai-yuan.A New Improved Generalized Ant Colony Optimization Algorithm[J].,2012,(12):39.
[9]于尚超 李阳 王鹏.基于拼凑替换的定理机器证明的研究与实现[J].计算机技术与发展,2012,(06):135.
 YU Shang-chao,LI Yang,WANG Peng.Research and Realization of Theorem Proving Based on Combination and Replace[J].,2012,(12):135.
[10]朱志慧 李雷 种冬梅.改进的BT—SVM应用于电力系统SSA[J].计算机技术与发展,2012,(09):157.
 ZHU Zhi-hui,LI Lei,CHONG Dong-mei.Improved Binary Tree Support Vector Machine and Its Application to Power System Static Security Assessment[J].,2012,(12):157.
[11]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(12):34.
[12]袁小敏[],曹云峰[],庄丽葵[]. 飞控系统数字化设计的专家系统研究[J].计算机技术与发展,2015,25(04):30.
 YUAN Xiao-min[],CAO Yun-feng[],ZHUANG Li-kui[]. Research on Expert System for Digital Design of Flight Control System[J].,2015,25(12):30.
[13]郭建峰[][],李玉[],安东[]. 基于LM遗传神经网络的短期股价预测[J].计算机技术与发展,2017,27(01):152.
 GUO Jian-feng[][],LI Yu[],AN Dong[]. Prediction for Short-term Stock Price Based on LM-GA-BP Neural Network[J].,2017,27(12):152.
[14]葛夕武[],朱超[],马骏毅[],等. 基于耦合隐马尔可夫模型的输电线路状态评估[J].计算机技术与发展,2017,27(04):154.
 GE Xi-wu[],ZHU Chao[],MA Jun-yi[],et al. State Evaluation of Transmission Line Based on CoupledHidden Markov Model[J].,2017,27(12):154.
[15]梅欢[] [],马艳东[] [],单九思[],等. 基于样条插值与RBF网络的道岔故障诊断系统[J].计算机技术与发展,2017,27(05):160.
 MEI Huan[][],MA Yan-dong[] [],SHAN Jiu-si[],et al. Research on Switch Fault Diagnosis System with Cubic SplineInterpolation and RBF Neural Network[J].,2017,27(12):160.

更新日期/Last Update: 2015-04-16