[1]姚明海[],王娜[],李劲松[]. 一种新的基于特征选择的虹膜识别方法[J].计算机技术与发展,2014,24(12):96-100.
 YAO Ming-hai[],WANG Na[],LI Jin-song[]. A Novel Iris Recognition Method Based on Feature Selection[J].,2014,24(12):96-100.
点击复制

 一种新的基于特征选择的虹膜识别方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年12期
页码:
96-100
栏目:
智能、算法、系统工程
出版日期:
2014-12-10

文章信息/Info

Title:
 A Novel Iris Recognition Method Based on Feature Selection
文章编号:
1673-629X(2014)12-0096-05
作者:
 姚明海[1]王娜[2]李劲松[3]
1.渤海大学 信息科学与技术学院;2.锦州师范高等专科学校 计算机系;3.凌河区对外经济贸易合作办公室
Author(s):
 YAO Ming-hai[1]WANG Na[2]LI Jin-song[3]
关键词:
 特征选择最优化虹膜识别边界定位归一化
Keywords:
 feature selectionoptimizationiris recognitionboundary localizationnormalization
分类号:
TP301
文献标志码:
A
摘要:
 为了提高虹膜识别的准确率,提出了一种新的基于特征选择的虹膜识别方法。在虹膜的定位上采用了弹性模板的方法,对虹膜图像进行有效定位。针对虹膜图像的纹理分布特点,采用了多尺度Gabor滤波器对虹膜的不同纹理区域进行有针对性的特征提取;然后利用遗传算法和粒子群优化算法进行特征选择,去除特征向量中的冗余信息;最后利用SVM分类模型进行虹膜的识别。为了检验方法的有效性,在CASIA虹膜数据库上进行验证,实验结果表明该方法具有较高的识别精准度。
Abstract:
 In order to improve the accuracy of iris recognition,a novel iris recognition method based on feature selection is proposed.U-sing the elastic template for locating efficiently iris image.Aiming at texture distribution characteristics of iris image,multi-scale Gabor filter is used to extract feature in different texture region of iris.Then,use genetic algorithm and particle swarm optimization algorithm for feature selection,removal of redundant information in the feature vector.Finally,the SVM classification model is used for iris recognition. In order to test the validity of the method,the method is verified in the CASIA iris database,the experimental results show that this meth-od has high recognition accuracy.

相似文献/References:

[1]刘利 何先平 袁文亮.股票趋势预测中Wrapper方法的研究与应用[J].计算机技术与发展,2010,(01):209.
 LIU Li,HE Xian-ping,YUAN Wen-liang.Research and Application of Wrapper Approach to Stock Trend Prediction[J].,2010,(12):209.
[2]黄炜 黄志华.一种基于遗传算法和SVM的特征选择[J].计算机技术与发展,2010,(06):21.
 HUANG Wei,HUANG Zhi-hua.Feature Selection Based on Genetic Algorithm and SVM[J].,2010,(12):21.
[3]张家柏 王小玲.基于聚类和二进制PSO的特征选择[J].计算机技术与发展,2010,(06):25.
 ZHANG Jia-bai,WANG Xiao-ling.A Novel Algorithm Based on K-Means Clustering and Binary Particle Swarm Optimization[J].,2010,(12):25.
[4]冯甲策 叶明 王惠文.基于Gram—Schmidt过程的支持向量机降维方法[J].计算机技术与发展,2009,(11):7.
 FENG Jia-ce,YE Ming,WANG Hui-wen.Dimension Reduction Method of Support Vector Machine Based on Gram- Schmidt Process[J].,2009,(12):7.
[5]林伟 柳荣其 徐熙.邮件过滤中一种改进的特征选择方法研究[J].计算机技术与发展,2009,(01):84.
 LIN Wei,LIU Rong-qi,XU Xi.Improvement of Feature Selection Algorithm in Spam Filtering[J].,2009,(12):84.
[6]刘毅 张月琳.基于Agent的邮件过滤与个性化分类系统设计[J].计算机技术与发展,2009,(02):66.
 LIU Yi,ZHANG Yue-lin.Design of a Mail Filter and Personalized Classification System Based on Agent[J].,2009,(12):66.
[7]陈素萍 谢丽聪.一种文本特征选择方法的研究[J].计算机技术与发展,2009,(02):112.
 CHEN Su-ping,XIE Li-cong.Research on Document Feature Selection[J].,2009,(12):112.
[8]段震 王倩倩 张燕平 张铃.覆盖算法下文本分类特征选择的研究[J].计算机技术与发展,2008,(11):29.
 DUAN Zhen,WANG Qian-qian,ZHANG Yan-ping,et al.Study on Feature Selection of Text Classification in Cross Cover Algorithm[J].,2008,(12):29.
[9]王希雷.基于Rough集理论的车牌汉字特征提取[J].计算机技术与发展,2007,(06):26.
 WANG Xi-lei.Car Plate Chinese Character Feature Extraction Based on Rough Set Theory[J].,2007,(12):26.
[10]董梅 胡学钢.基于多特征选择的中文文本分类[J].计算机技术与发展,2007,(07):117.
 DONG Mei,HU Xue-gang.Text Categorization Based on Multiple Features Selection[J].,2007,(12):117.
[11]王园萍,殷洪友. 基于矩阵分数范数的人脸识别方法[J].计算机技术与发展,2015,25(04):22.
 WANG Yuan-ping,YIN Hong-you. Face Recognition Method Based on Fractional Matrix Norm[J].,2015,25(12):22.
[12]梁天超[][],荆晓远[],姚永芳[],等. 基于加权RFE-Bayes方法的软件缺陷预测模型[J].计算机技术与发展,2015,25(10):131.
 LIANG Tian-chao[][],JING Xiao-yuan[],YAO Yong-fang[],et al. A Prediction Model for Software Defect Based on Weighted RFE-Bayes[J].,2015,25(12):131.
[13]李春生,邸京华,李少龙,等. 时序化生产预警有效影响因子的获取方法研究[J].计算机技术与发展,2016,26(07):122.
 LI Chun-sheng,DI Jing-hua,LI Shao-long,et al. Research on Acquisition Method of Effective Impact Factors in Production Early Warning by Time Series[J].,2016,26(12):122.
[14]周丰,王未央. 基于最小最大模块化集成特征选择的改进[J].计算机技术与发展,2016,26(09):149.
 ZHOU Feng,WANG Wei-yang. Improvement of Multi-classification Integrated Selection Based on Min-Max-Module[J].,2016,26(12):149.
[15]张淑雯,刘效武,孙雪岩. 基于多源融合的网络安全态势层次感知[J].计算机技术与发展,2016,26(10):77.
 ZHANG Shu-wen,LIU Xiao-wu,SUN Xue-yan. Hierarchical Awareness of Network Security Situation Based on Multi-source Fusion [J].,2016,26(12):77.
[16]李策,王保云,高浩. 基于自适应粒子群算法的特征选择[J].计算机技术与发展,2017,27(04):89.
 LI Ce,WANG Bao-yun,GAO Hao. Feature Selection Based on Adaptive Particle Swarm Optimization[J].,2017,27(12):89.

更新日期/Last Update: 2015-04-15