[1]姚刚,杨敏. 稀疏子空间聚类的惩罚参数自调整交替方向法[J].计算机技术与发展,2014,24(11):131-134.
 YAO Gang,YANG Min. Alternating Direction Method of Self-adjusting Penalty Parameters of Sparse Subspace Clustering[J].,2014,24(11):131-134.
点击复制

 稀疏子空间聚类的惩罚参数自调整交替方向法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年11期
页码:
131-134
栏目:
智能、算法、系统工程
出版日期:
2014-11-10

文章信息/Info

Title:
 Alternating Direction Method of Self-adjusting Penalty Parameters of Sparse Subspace Clustering
文章编号:
1673-629X(2014)11-0131-04
作者:
 姚刚杨敏
 南京邮电大学 自动化学院
Author(s):
 YAO GangYANG Min
关键词:
 子空间聚类稀疏表示L1范数正则化交替方向法
Keywords:
 subspace clusteringsparse representationL1 norm regularizationalternating direction method
分类号:
TP30
文献标志码:
A
摘要:
 稀疏子空间聚类是利用子空间并集中数据向量的稀疏表示,从而将数据划分到各自子空间,该类方法关键是求出最优稀疏解。文中采用交替方向法求稀疏解,交替方向法把复杂问题分解成简单的、有效求解的子问题,达到最优速度。在交替方向法求解过程中,通常惩罚因子是恒定不变的。文中提出一种惩罚因子参数自调整策略,根据每次迭代信息,调整惩罚因子参数。基于运动分割数据和Hopkins数据库实验,结果表明在迭代次数和运算时间上,稀疏子空间聚类的交替方向法及其惩罚参数自调整策略比传统算法有很大提高,而且对噪声数据也非常有效。
Abstract:
 Sparse subspace clustering uses the sparse representation of vectors lying on a union of subspace to cluster the data into separate subspaces. The key of this algorithm is to find the optimal sparse solution. Alternating Direction Method ( ADM) is applied to solve sparse problem in this paper. ADM divides the complex problem into simple and effectively solving sub-problem to achieve optimal speed. In the process of the ADM solving,the penalty factor is constant. In this paper,a penalty factor self-adjusting strategy is proposed, according to the each iterative information,adjust the penalty factor parameters. The experiment based on motion division data and Hop-kins database shows that the proposed method has great improvement in iteration times and computing time compared with traditional al-gorithms,is also valid for noisy data.

相似文献/References:

[1]刘炯 徐同阁.基于NetFlow的应用协议半监督识别算法[J].计算机技术与发展,2010,(07):9.
 LIU Jiong,XU Tong-ge.A Semi-Supervised Clustering Algorithm for Application Protocol Recognition Based on NetFlow[J].,2010,(11):9.
[2]许倡森.基于混合网格划分的子空间高维数据聚类算法[J].计算机技术与发展,2010,(10):150.
 XU Chang-sen.A Subspace Clustering Algorithm of High Dimension Data Based on Hybrid-Grid Partitioning[J].,2010,(11):150.
[3]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[4]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[5]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[6]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(11):21.
[7]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(11):25.
[8]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(11):29.
[9]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(11):34.
[10]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(11):38.

更新日期/Last Update: 2015-04-13