[1]胡龙萍,徐晓凤. 基于灰色聚类的汽车健康状态评估[J].计算机技术与发展,2014,24(10):216-220.
 HU Long-ping,XU Xiao-feng. Automobile Health Status Assessment Based on Gray Clustering[J].,2014,24(10):216-220.
点击复制

 基于灰色聚类的汽车健康状态评估()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年10期
页码:
216-220
栏目:
应用开发研究
出版日期:
2014-10-10

文章信息/Info

Title:
 Automobile Health Status Assessment Based on Gray Clustering
文章编号:
1673-629X(2014)10-0216-05
作者:
 胡龙萍徐晓凤
 合肥工业大学 管理学院;过程优化与智能决策教育部重点实验室
Author(s):
 HU Long-ping XU Xiao-feng
关键词:
 健康管理灰色聚类评估指标健康状态评估
Keywords:
 health managementgray clusteringassessment indexhealth status assessment
分类号:
TP39
文献标志码:
A
摘要:
 文中基于汽车健康管理的概念提出对汽车健康状态进行评估。汽车健康状态评估作为健康管理的重要内容具有重要的现实研究意义。汽车健康状态评估的结果可以为车主提供维修提醒,为汽车维修人员提供初步维修决策,其满足汽车健康管理的需求。汽车系统是一个灰色系统,文中采用灰色理论与聚类分析相结合的灰色聚类方法进行汽车健康状态评估,根据灰色聚类决策方法的原理,分析了汽车健康状态评估指标体系,然后使用模糊层次分析法确定各指标权重,最后利用灰色聚类方法对汽车健康状态等级进行评估。实例表明,基于灰色聚类理论建立的汽车健康状态评估模型科学合理、方便快捷,并具有很好的实用性。
Abstract:
 Based on concept of automobile health management,put forward assessing health status of the automobile in this paper. Auto-mobile health status assessment as an important part of health management has important practical significance. The results of automobile health status assessment can provide vehicle owners with maintenance reminders,vehicle maintenance personnel with initial maintenance decision,which meet the needs of automobile health management. Automobile system is a gray system,in this paper use gray clustering method,which combines the gray theory with clustering methods,on automobile health status assessment. Based on gray clustering theo-ry,the index system of automobile health status assessment is analyzed,then the fuzzy hierarchical analysis method is utilized to determine the index weight,finally the level of automobile health status is estimated by gray clustering method. The result of example shows the model is convenient,scientific and reasonable,and has good practicability.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(10):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(10):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(10):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(10):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(10):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(10):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(10):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(10):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(10):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(10):47.

更新日期/Last Update: 2015-04-03