[1]叶树鑫[],何聚厚[][]. 协作学习中基于协同过滤的学习资源推荐研究[J].计算机技术与发展,2014,24(10):63-66.
 YE Shu-xin[],HE Ju-hou[][]. esearch on Learning Material Recommendation Based on Collaborative Filtering Algorithm in Cooperative Learning[J].,2014,24(10):63-66.
点击复制

 协作学习中基于协同过滤的学习资源推荐研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年10期
页码:
63-66
栏目:
智能、算法、系统工程
出版日期:
2014-10-10

文章信息/Info

Title:
 esearch on Learning Material Recommendation Based on Collaborative Filtering Algorithm in Cooperative Learning
文章编号:
1673-629X(2014)10-0063-04
作者:
 叶树鑫[1] 何聚厚[1][2]
 1.陕西师范大学 计算机科学学院;2.陕西师范大学 现代教学技术教育部重点实验室
Author(s):
 YE Shu-xin[1] HE Ju-hou[1][2]
关键词:
 协同过滤算法学习资源推荐协作学习
Keywords:
 collaborative filtering algorithmlearning materials recommendationcollaborative learning
分类号:
TP391
文献标志码:
A
摘要:
 符合学习者特征的学习资源对于提高协作学习效率具有重要的影响。但是传统的学习资源推荐,没有充分考虑学习者、学习资源的特征和高效的推荐算法。针对上述问题,提出了基于协同过滤的学习资源推荐算法,根据学习者学习特征、学习资源特征和学习者对学习资源历史评价信息,采用协同过滤推荐算法,实现学习资源推荐。首先,通过学习者特征和学习资源的评分,寻找相似学习者并计算学习资源预测评分,然后根据该评分值和学习资源与学习者匹配度推荐学习资源,从而为学习者推荐符合自己兴趣爱好最合适的学习资源。实验结果表明该算法在个性化学习资源推荐的准确性上优于传统算法。
Abstract:
 The appropriate learning material is very important to improve learners’ learning efficiency in cooperative learning environ-ment. However,traditional recommendation of learning material doesn’t consider the learner features,learning materials features and rec-ommendation algorithm enough. To solve the problems,propose a personalized learning materials recommendation algorithm based on collaborative filtering,which takes the learners’ learning features,the features of learning materials and the historical assessment informa-tion of learners to learning material into consideration,using the collaborative recommendation algorithm to realize the learning material recommending. First,through the score of learner feature and learning material,search the similar learners and compute the learning mate-rial prediction score. Then,based on predicting ratings and relationship between leaner and learning materials,produce the final recom-mending learning materials. Experimental results show that the proposed algorithm outperforms the other recommendation ones in recom-mending accuracy.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(10):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(10):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(10):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(10):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(10):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(10):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(10):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(10):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(10):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(10):47.
[11]谢人强,陈震. 基于共同评分项和权重计算的推荐算法研究[J].计算机技术与发展,2016,26(09):69.
 XIE Ren-qiang,CHEN Zhen. Research on Recommendation Algorithm Based on Co-rating and Weight Calculation[J].,2016,26(10):69.
[12]马婉贞,钱育蓉. 基于标签匹配的协同过滤推荐算法研究[J].计算机技术与发展,2017,27(07):25.
 MA Wan-zhen,QIAN Yu-rong. Investigation on Collaborative Filtering Recommendation Algorithm with Tag Matching[J].,2017,27(10):25.

更新日期/Last Update: 2015-04-02