[1]李桃陶,周斌,王忠振. 基于社交网络的图数据挖掘应用研究[J].计算机技术与发展,2014,24(10):6-11.
 LI Tao-tao,ZHOU Bin,WANG Zhong-zhen. Research on Graph Data Mining Application Based on Social Network[J].,2014,24(10):6-11.
点击复制

 基于社交网络的图数据挖掘应用研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年10期
页码:
6-11
栏目:
智能、算法、系统工程
出版日期:
2014-10-10

文章信息/Info

Title:
 Research on Graph Data Mining Application Based on Social Network
文章编号:
1673-629X(2014)10-0006-06
作者:
 李桃陶周斌王忠振
 国防科学技术大学 计算机学院
Author(s):
 LI Tao-taoZHOU BinWANG Zhong-zhen
关键词:
 图挖掘图查询图分类图聚类图形数据库社交网络
Keywords:
 graph mininggraph querygraph classificationgraph clusteringgraph databasesocial network
分类号:
TP39
文献标志码:
A
摘要:
 社交网络数据的高度复杂性给数据挖掘研究带来了巨大的挑战,而社交网络数据挖掘更注重实体之间相互关联的特点,使得图数据挖掘技术的研究与应用逐渐成为该领域的热点。传统数据挖掘,如聚类、分类、频繁模式挖掘等技术逐渐拓展到图数据挖掘领域。文中首先介绍了现阶段图数据挖掘算法(其中包括图查询、图聚类、图分类和图的频繁子图挖掘)的研究内容和存在的问题;其次介绍了图形数据库研究现状,以及对比了主流图形数据库管理系统的优劣;最后介绍了图挖掘技术在社交网络中的应用。
Abstract:
 The high complexity of the social network data brings a huge challenge for data mining research. The social network data min-ing pays more attention to the relationship between entities,and the research and application of graph mining technology is gradually be-coming a hotspot in the field. Traditional data mining,such as clustering,classification,frequent pattern mining technology has gradually extended to graph mining field. In this paper,introduce the present the research content of graph data mining algorithm ( including graph query,graph clustering,graph classification and frequent sub-graph mining) and the existing problems first. Second introduce the research status of graph database,and compare the advantages and disadvantages of the mainstream graphics database management system. Finally introduce the application of graph mining technology in social network.

相似文献/References:

[1]孔德生 何洁月.蛋白质作用网络中模体识别技术研究[J].计算机技术与发展,2010,(08):1.
 KONG De-sheng,HE Jie-yue.Survey of Motif Discovery Algorithms in Protein-Protein Interaction Networks[J].,2010,(10):1.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(10):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(10):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(10):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(10):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(10):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(10):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(10):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(10):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(10):43.

更新日期/Last Update: 2015-04-02