[1]王万国,王滨海,张晶晶,等. 基于直方图规定化的图像去雾算法[J].计算机技术与发展,2014,24(09):241-244.
 WANG Wan-guo,WANG Bin-hai,ZHANG Jing-jing,et al. Image Haze Removal Algorithm Based on Histogram Specification[J].,2014,24(09):241-244.
点击复制

 基于直方图规定化的图像去雾算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年09期
页码:
241-244
栏目:
应用开发研究
出版日期:
2014-09-10

文章信息/Info

Title:
 Image Haze Removal Algorithm Based on Histogram Specification
文章编号:
1673-629X(2014)09-0241-04
作者:
 王万国王滨海张晶晶李丽
 国网山东省电力公司电力科学研究院 国家电网公司电力机器人技术实验室; 山东鲁能智能技术有限公司
Author(s):
 WANG Wan-guoWANG Bin-haiZHANG Jing-jingLI Li
关键词:
 高斯函数直方图规定化图像去雾 加权
Keywords:
 Gaussian functionhistogram specificationimage haze removalweighted
分类号:
TP301.6
文献标志码:
A
摘要:
 直方图规定化是图像增强领域一个常用的算法,文中提出一种通过高斯函数加权的直方图规定化的图像去雾算法。首先通过分析晴天与雾霾天气下图像的直方图的特点,提出一种通过对高斯函数中方差的改变和高斯函数的加权的方式,解决了原有的单纯高斯函数直方图规定化图像偏暗的问题。通过实验图像的对比可以看出,文中提出的算法可有效去除雾霾天气的影响,其处理效果明显优于直方图规定化算法,而且计算量小、处理速度快、不需要人工干预。
Abstract:
 Histogram specification is a commonly used algorithm in image enhancement field. Propose an image haze removal algorithm of histogram specification based on the weighted Gaussian probability density function ( Gaussian PDF) in this paper. Firstly,analyzing the characteristics of image histogram that captured in sunny,fogging and haze weather. Then,solve the weak intensity problem of image specification of the single Gaussian function through changing the variance and weighted Gaussian PDF. The experimental results show the algorithm is able to remove the fog effectively,which is superior to the some existing algorithms of histogram specification about effi-ciency. It also has many advantages such as low computation,fast processing speed,no manual intervention.

相似文献/References:

[1]李春林 杨洁 杨世兴.造影图像中冠状动脉的增强方法研究[J].计算机技术与发展,2010,(03):188.
 LI Chun-lin,YANG Jie,YANG Shi-xing.Study on Approach to Enhance Coronary Artery in Angiograms[J].,2010,(09):188.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(09):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(09):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(09):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(09):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(09):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(09):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(09):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(09):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(09):43.
[11]李飞,丁若修,张志佳. 基于曲波变换的图像去雾算法研究[J].计算机技术与发展,2017,27(07):65.
 LI Fei,DING Ruo-xiu,ZHANG Zhi-jia. Research on Image Defogging Algorithm Based on Curvelet Transform[J].,2017,27(09):65.

更新日期/Last Update: 2015-04-02