[1]崔鹏帅,朱浩洋,任浩. 基于分层模型的组合服务故障定位算法[J].计算机技术与发展,2014,24(09):6-10.
 CUI Peng-shuai,ZHU Hao-yang,REN Hao. A Fault Location Algorithm of Composition Service Based on Hierarchical Model[J].,2014,24(09):6-10.
点击复制

 基于分层模型的组合服务故障定位算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年09期
页码:
6-10
栏目:
智能、算法、系统工程
出版日期:
2014-09-10

文章信息/Info

Title:
 A Fault Location Algorithm of Composition Service Based on Hierarchical Model
文章编号:
1673-629X(2014)09-0006-05
作者:
 崔鹏帅朱浩洋任浩
 国防科学技术大学 计算机学院
Author(s):
 CUI Peng-shuaiZHU Hao-yangREN Hao
关键词:
 网络服务故障定位分层模型贝叶斯网络
Keywords:
 Web Servicefault locationlayering modelBayesian network
分类号:
TP301.6
文献标志码:
A
摘要:
 在面向服务的架构中,服务之间的依赖关系具有单向性的特点。基于这种单向性依赖,提出了服务故障传播的分层模型并设计了服务的分层算法,将服务节点分层。根据分层模型设计了服务故障定位的监测探针和诊断部署,减少了监测探针的数目。在探针探测结果的基础上,提出了分层模型下基于贝叶斯网络的故障定位算法,该算法通过计算故障发生时服务的影响因子和可信度,快速定位故障。仿真结果验证了该算法可以较准确地定位组合服务中的故障,且保持较低的误报率。
Abstract:
 The dependencies between services have the property of unidirection in Service-Oriented Architecture ( SOA) . A hierarchical model of services fault propagation is proposed based on the property and a hierarchical algorithm is designed to classify the services into different layers. Active probing approach is also used to detect the service’s symptom,and the number of detection probing has been de-creased as a result of the use of hierarchical model. Based on the result of detection probing,a fault location algorithm under the hierarchi-cal model based on Bayesian network is put forward,which can locate the fault service quickly by calculating the impact factor of every service when there exist faults. The simulation results show that the fault location algorithm can accurately locate service fault of composi-tion Web Service and maintain a low rate of false positive.

相似文献/References:

[1]张俊妍 陈启买.SOAP协议性能与安全的研究进展[J].计算机技术与发展,2009,(06):163.
 ZHANG Jun-yan,CHEN Qi-mai.Survey on Performance and Safety of SOAP[J].,2009,(09):163.
[2]曲巨宝.XML网络服务安全策略应用[J].计算机技术与发展,2007,(12):151.
 QU Ju-bao.Application of Web Service Security[J].,2007,(09):151.
[3]陶海燕 曹书涛.EAI技术在电子政务集成中的应用[J].计算机技术与发展,2006,(02):4.
 TAO Hai-yan,CAO Shu-tao.Application of EAI Technology in Electronic Government System[J].,2006,(09):4.
[4]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(09):1.
[5]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(09):5.
[6]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(09):13.
[7]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(09):21.
[8]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(09):25.
[9]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(09):29.
[10]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(09):34.
[11]王晓明[],栾梅[],张龙昌[],等. 物联网融合网络数字档案馆云服务框架研究[J].计算机技术与发展,2017,27(09):129.
 WANG Xiao-ming[],LUAN Mei[],ZHANG Long-chang[],et al. Research on Cloud Service Framework of Digital Archive under Internet of Things and Network Fusion[J].,2017,27(09):129.

更新日期/Last Update: 2015-04-01