[1]张俊溪[],杨海粟[]. 基于层次聚类的离群点分析方法[J].计算机技术与发展,2014,24(08):80-83.
 ZHANG Jun-xi[],YANG Hai-su[].Outlier Analysis Method Based on Hierarchical Clustering[J].,2014,24(08):80-83.
点击复制

 基于层次聚类的离群点分析方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年08期
页码:
80-83
栏目:
智能、算法、系统工程
出版日期:
2014-08-10

文章信息/Info

Title:
Outlier Analysis Method Based on Hierarchical Clustering
文章编号:
1673-629X(2014)08-0080-04
作者:
 张俊溪[1]杨海粟[2]
 1.西安航空学院 车辆与医电工程系;2.西安电子工程研究所
Author(s):
 ZHANG Jun-xi[1]YANG Hai-su[2]
关键词:
 离群点凝固层次聚类元胞自动机离群特性
Keywords:
 outliersagglomerative clusteringcellular automataclustersoutlier characteristics
分类号:
TP311.1
文献标志码:
A
摘要:
 发现离群点并合理地解释离群点对数据挖掘结果的运用有重要意义,通过对离群点属性的检测可以发现其离群特性,进而更加准确地解释聚类结果。针对在聚类结果中出现的不同离群点及其特性,提出将层次聚类算法应用于离群点分析,通过元胞自动机距离变换算法实现凝固层次聚类,实现了簇间距离的度量;定义了演化周期上的平均度量距离,能够发现不同聚类层次上的离群点及其离群特性。该算法能够在得到聚类结果的同时,有效地解释离群点的属性,并具有较低的计算复杂度和并行计算以及向高维空间扩展的特性。通过试验数据进行了实证研究,验证了算法的有效性。
Abstract:
 It is very important for data mining results to find the outliers and interpret them reasonably. It can find the characteristics from the group to detect the outliers attribute,interpreting the clustering results more accurately. In view of the various outliers and their charac-teristics in clustering results,hierarchical clustering algorithm is applied in outlier analysis,achieving the agglomerative clustering by the distance transform method based on Cellular Automata ( CA) ,which could measure the distance between clusters. The average metric is defined,which could discover outliers and their characteristics on each clustering result. The proposed algorithm can obtain clustering re-sults,simultaneously effectively interpreting the properties of outliers,which is verified to be lower in computational complexity and has the characteristics of extending to high dimensional space and parallel computing. Simulation results of the sample are given to illustrate the effectiveness of the algorithm.

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(08):120.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(08):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(08):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(08):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(08):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(08):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(08):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(08):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(08):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(08):43.
[11]周莹莹,王晓军. 利用离群点算法预处理协同过滤推荐系统数据[J].计算机技术与发展,2015,25(09):129.
 ZHOU Ying-ying,WANG Xiao-jun. Pre-filtering Data of Collaborative Filtering Recommendation System by Outliers Algorithm[J].,2015,25(08):129.

更新日期/Last Update: 2015-03-26