[1]占美星[],杨颖[],杨磊[]. 基于树结构多重最小支持度的挖掘算法研究[J].计算机技术与发展,2014,24(08):45-50.
 ZHAN Mei-xing[],YANG Ying[],YANG Lei[]. Study on Mining Algorithm Based on Tree Structure Multiple Minimum Supports[J].,2014,24(08):45-50.
点击复制

 基于树结构多重最小支持度的挖掘算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年08期
页码:
45-50
栏目:
智能、算法、系统工程
出版日期:
2014-08-10

文章信息/Info

Title:
 Study on Mining Algorithm Based on Tree Structure Multiple Minimum Supports
文章编号:
1673-629X(2014)08-0045-06
作者:
 占美星[1]杨颖[1]杨磊[2]
 1.广西大学 计算机与电子信息学院;2.广西科学院 应用物理研究所
Author(s):
 ZHAN Mei-xing[1]YANG Ying[1] YANG Lei[2]
关键词:
 数据挖掘序列模式多重最小支持度
Keywords:
 data miningsequential patternsmultiple minimum supports
分类号:
TP301.6
文献标志码:
A
摘要:
 传统的序列数据库中各数据项的最小支持度是单一的,且不能有效挖掘用户感兴趣的、稀有的数据项。为了有效提高数据挖掘的效率和准确率,文中基于PLWAP-tree提出了前序链接多重支持度树( Preorder Linked Multiple Supports tree,PLMS-tree)来存储序列数据库,并进一步提出了多重最小支持度条件模式增长( Multiple Support-Conditional Pattern growth,MSCP-growth)算法。算法采用对每个频繁数据项设置多重最小支持度的方法来减少空间和时间的开销。对于每个频繁数据项设置不同的支持度,来挖掘用户所需的数据序列,能有效提高数据挖掘的效率和准确率。实验结果验证了算法的有效性,对序列模式下的数据项目集挖掘的时间效率和空间效率有明显的提高。
Abstract:
 The minimum support of each data in traditional sequence database is single and cannot effectively mine user interest and rare items. In order to effectively improve the efficiency and accuracy of data mining,based on PLWAP-tree,the Preorder Link Multiple Sup-ports tree ( PLMS-tree) is structured to store the entire sequence databases,and then the algorithm of Multiple Supports Conditional Pat-tern growth ( MSCP-growth) is proposed. It reduces the cost of space and time through multiple minimum supports. Each frequent item sets different supports to meet the required data pattern. Experimental results demonstrate the effectiveness of the algorithm,which can sig-nificantly improve mining time and space efficiency for the data item set in the sequence mode.

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(08):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(08):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(08):235.
[4]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(08):114.
[5]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(08):229.
[6]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(08):93.
[7]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(08):105.
[8]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(08):84.
[9]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(08):109.
[10]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(08):113.
[11]李蓉,周维柏. 基于多特征选取和类完全加权的入侵检测[J].计算机技术与发展,2014,24(07):145.
 LI Rong,ZHOU Wei-bai. Intrusion Detection Based on Multiple Feature Selection and Class Fully Weighted [J].,2014,24(08):145.
[12]于海平[],林晓丽[],刘会超[]. 基于数据挖掘的移动广告个性化推荐研究[J].计算机技术与发展,2014,24(08):234.
 YU Hai-ping[],LIN Xiao-li[],LIU Hui-chao[]. Research of Mobile Internet Advertising Personalized Recommendation Based on Data Mining[J].,2014,24(08):234.
[13]孙媛,黄刚. 基于Hadoop平台的C4.5算法的分析与研究[J].计算机技术与发展,2014,24(11):83.
 SUN Yuan,HUANG Gang. Analysis and Study of C4 . 5 Algorithm Based on Hadoop Platform[J].,2014,24(08):83.
[14]牛永洁,薛苏琴. 基于PDFBox抽取学术论文信息的实现[J].计算机技术与发展,2014,24(12):61.
 NIU Yong-jie,XUE Su-qin. Realization of Extraction of Academic Papers Information Based on PDFBox[J].,2014,24(08):61.
[15]郑超,高茂庭,吴爱华. 基于RFID及其路径约束的生产检查流程控制[J].计算机技术与发展,2015,25(02):225.
 ZHENG Chao,GAO Mao-ting,WU Ai-hua. Production Testing Process Control Based on RFID with Path Constraint[J].,2015,25(08):225.
[16]顾伟[][],傅德胜[][],蔡玮[]. 基于命题逻辑的关联规则挖掘算法[J].计算机技术与发展,2015,25(03):91.
 GU Wei[][],FU De-sheng[][],CAI Wei[]. Association Rules Mining Algorithm Based on Propositional Logic[J].,2015,25(08):91.
[17]陈运文,吴飞,吴庐山,等. 基于异常检测的时间序列研究[J].计算机技术与发展,2015,25(04):166.
 CHEN Yun-wen,WU Fei,WU Lu-shan,et al. Research on Time Series Based on Anomaly Detection[J].,2015,25(08):166.
[18]王晓鹏,武彤. 生产质量控制数据仓库模型设计与实现[J].计算机技术与发展,2015,25(06):181.
 WANG Xiao-peng,WU Tong. Design and Realization of Data Warehouse Model on Production Quality Control[J].,2015,25(08):181.
[19]王玉雷,李玲娟. 一种密度和划分结合的聚类算法[J].计算机技术与发展,2015,25(09):53.
 WANG Yu-le,LI Ling-juan. A Clustering Algorithm of Combination of Density and Division[J].,2015,25(08):53.
[20]李全. 适用于协议特征提取的多级T+序列树挖掘算法[J].计算机技术与发展,2015,25(10):71.
 LI Quan. Mining Algorithm Based on Multilevel T+ Sequence Tree for Protocol Signatures Extracting[J].,2015,25(08):71.

更新日期/Last Update: 2015-03-26