[1]侯崇明,袁广林,汪群山.自动协商中Agents的行为建模[J].计算机技术与发展,2014,24(05):100-104.
 HOU Chong-ming,YUAN Guang-lin,WANG Qun-shan.Behaviour Modelling of Agents in Automated Negotiation[J].,2014,24(05):100-104.
点击复制

自动协商中Agents的行为建模()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年05期
页码:
100-104
栏目:
智能、算法、系统工程
出版日期:
2014-05-31

文章信息/Info

Title:
Behaviour Modelling of Agents in Automated Negotiation
文章编号:
1673-629X(2014)05-0100-05
作者:
侯崇明袁广林汪群山
陆军军官学院 十一系
Author(s):
HOU Chong-mingYUAN Guang-linWANG Qun-shan
关键词:
Agent协商行为决策函数非线性回归
Keywords:
Agentnegotiationbehaviourdecision functionnonlinear regression
分类号:
TP391
文献标志码:
A
摘要:
文中提出了一种预测协商中Agent行为的学习机制,该机制的基础是仅使用协商交往中对方的历史响应进行非线性回归分析。自动协商中对方Agent的行为由其决策函数表示的策略决定。先通过一系列的模拟得到对方在采用各种策略和参数配置的响应,然后总结提取了估计对方策略的启发性知识,最后把此知识应用到实验性的在线协商中进行测试。结果表明使用这些知识能够取得比现有决策函数策略更好的结果。该学习机制可以在线使用,也不需要有关于对方的过去知识,在双方不了解或很少了解的开放式系统中尤为有效。
Abstract:
A learning mechanism to predict a negotiation Agent's behaviour is presented,the basis of the mechanism is only to apply the opponent's previous offers for nonlinear regression analysis. The behaviour of negotiation Agents is determined by their tactics in the form of decision functions. Heuristics based on estimates of an Agent's tactics are drawn from a series of experiments with varying tactics and combinations of parameters. The obtained heuristics is then applied to a series of simulated online negotiation sessions. The results of these simulated sessions show that this approach can be used to obtain better deals than existing decision function tactics. The learning mechanism can be used online,without any prior knowledge about the other Agents,therefore is very useful in open systems where Agents have little or no information about each other.

相似文献/References:

[1]裘杭萍 肖登海 连向磊 王玲玲.一种新的基于Agent的体系结构[J].计算机技术与发展,2010,(01):46.
 QIU Hang-ping,XIAO Deng-hai,LIAN Xiang-lei,et al.A New Architecture Based on Agent[J].,2010,(05):46.
[2]田翠华 于天放 刘革.基于Agent技术的交通流仿真研究[J].计算机技术与发展,2010,(02):233.
 TIAN Cui-hua,YU Tian-fang,LIU Ge.Research on Traffic Flow Simulation Based on Agent Technology[J].,2010,(05):233.
[3]蔡增玉 甘勇 金宝华 冯媛 贺蕾.Agent在物流领域中的应用研究[J].计算机技术与发展,2009,(06):232.
 CAI Zeng-yu,GAN Yong,JIN Bao-hua,et al.Research on Application of Agent in Field of Logistics[J].,2009,(05):232.
[4]刘毅 张月琳.基于Agent的邮件过滤与个性化分类系统设计[J].计算机技术与发展,2009,(02):66.
 LIU Yi,ZHANG Yue-lin.Design of a Mail Filter and Personalized Classification System Based on Agent[J].,2009,(05):66.
[5]张林 徐勇 刘福成.多Agent系统的技术研究[J].计算机技术与发展,2008,(08):80.
 ZHANG Lin,XU Yong,LIU Fu-cheng.Research of Multi - Agent System Technology[J].,2008,(05):80.
[6]朱永海.Microsoft Agent语音技术的Authorware调用[J].计算机技术与发展,2008,(08):169.
 ZHU Yong-hai.Audio Function Application of Microsoft Agent in Authorware[J].,2008,(05):169.
[7]陈晶.基于Agent的无线传感网QoS管理机制研究[J].计算机技术与发展,2008,(11):230.
 CHEN Jing.QoS Management Mechanism by Agent in Wireless Sensor Networks[J].,2008,(05):230.
[8]张宇晴 郑小建 胡旦华.无线传感网络中基于Agent的高效路由算法的研究[J].计算机技术与发展,2007,(09):120.
 ZHANG Yu-qing,ZHENG Xiao-jian,HU Dan-hua.Agent- Based Efficient Routing Algorithm in Wireless Sensor Networks[J].,2007,(05):120.
[9]周清 林拉.基于Agent技术的在线测试系统研究与设计[J].计算机技术与发展,2007,(10):184.
 ZHOU Qing,LIN La.Research and Design on Agent- Based Online Testing System[J].,2007,(05):184.
[10]叶斌.基于多Agent的高校教学评测系统模型研究[J].计算机技术与发展,2007,(11):225.

更新日期/Last Update: 1900-01-01