[1]姚明海,赵连朋,刘维学.基于特征选择的Bagging分类算法研究[J].计算机技术与发展,2014,24(04):103-106.
 YAO Ming-hai,ZHAO Lian-peng,LIU Wei-xue.Research on Bagging Classification Algorithm Based on Feature Selection[J].,2014,24(04):103-106.
点击复制

基于特征选择的Bagging分类算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年04期
页码:
103-106
栏目:
智能、算法、系统工程
出版日期:
2014-04-30

文章信息/Info

Title:
Research on Bagging Classification Algorithm Based on Feature Selection
文章编号:
1673-629X(2014)04-0103-04
作者:
姚明海赵连朋刘维学
渤海大学 信息科学与技术学院
Author(s):
YAO Ming-haiZHAO Lian-pengLIU Wei-xue
关键词:
数据挖掘特征选择集成学习互信息Bagging分类器
Keywords:
data miningfeature selectionensemble learning mutual informationBaggingclassifier
分类号:
TP301.6
文献标志码:
A
摘要:
为了提高数据的分类性能,提出了一种基于特征选择的Bagging分类算法。通过Fisher准则和互信息的方法给定一种能够直接评价特征区分度和与类别相关性的评价方法,重新构造了计算特征区分度和与类别相关性的计算公式。并将该方法应用到Bagging分类算法当中。实现了算法迭代过程中的特征选择,使得每个基分类器都是由不同的特征子集训练所得,保证了基分类器的独立性,降低了训练误差。通过理论分析和大量的实验,对文中的方法与经典特征选择方法进行了比较,实验结果显示文中的方法能够得到更高的预测精准度。
Abstract:
In order to improve the classification performance of data,a Bagging classification algorithm based on feature selection is pro-posed in this paper. An evaluation method is proposed for full account of the discrimination and class information of each feature by the Fisher criterion and mutual information,built on the formula about discrimination and class information. The feature selection algorithm is applied to the Bagging classification algorithm. The feature selection is implemented in the iterative process of algorithm,so that each base classifier is trained by different feature subsets,which ensures the independence of each base classifier,reducing the training error. Com-pared the method with several classical feature selection methods by theoretical analysis and extensive experiments,the results show that the method can achieve higher predictive accuracy.

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(04):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(04):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(04):235.
[4]刘利 何先平 袁文亮.股票趋势预测中Wrapper方法的研究与应用[J].计算机技术与发展,2010,(01):209.
 LIU Li,HE Xian-ping,YUAN Wen-liang.Research and Application of Wrapper Approach to Stock Trend Prediction[J].,2010,(04):209.
[5]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(04):114.
[6]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(04):229.
[7]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(04):93.
[8]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(04):105.
[9]黄炜 黄志华.一种基于遗传算法和SVM的特征选择[J].计算机技术与发展,2010,(06):21.
 HUANG Wei,HUANG Zhi-hua.Feature Selection Based on Genetic Algorithm and SVM[J].,2010,(04):21.
[10]张家柏 王小玲.基于聚类和二进制PSO的特征选择[J].计算机技术与发展,2010,(06):25.
 ZHANG Jia-bai,WANG Xiao-ling.A Novel Algorithm Based on K-Means Clustering and Binary Particle Swarm Optimization[J].,2010,(04):25.

更新日期/Last Update: 1900-01-01