[1]杨小东,刘波.人工蜂群算法加速收敛技术研究[J].计算机技术与发展,2014,24(04):25-28.
 YANG Xiao-dong,LIU Bo.Research on Accelerating Convergence Technique of Artificial Bee Colony Algorithm[J].,2014,24(04):25-28.
点击复制

人工蜂群算法加速收敛技术研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年04期
页码:
25-28
栏目:
智能、算法、系统工程
出版日期:
2014-04-30

文章信息/Info

Title:
Research on Accelerating Convergence Technique of Artificial Bee Colony Algorithm
文章编号:
1673-629X(2014)04-0025-04
作者:
杨小东刘波
西北工业大学 动力与能源学院
Author(s):
YANG Xiao-dongLIU Bo
关键词:
人工蜂群算法搜索策略欧式距离全局收敛
Keywords:
artificial bee colony algorithmsearch strategyEuclidean distanceglobal convergence
分类号:
TP301.6
文献标志码:
A
摘要:
为提高蜂群算法的收敛速度及精度,提高其工程应用价值,探索了蜂群算法的加速收敛技术。通过分析自然界真实蜜蜂群间的信息共享模式,发现标准蜂群算法在适应度信息共享的处理上存在不足,导致该算法存在易陷入局部最优及收敛速度慢的缺点。文中在标准算法的基础上,修改了适应度共享机制,使得一定邻域内的多个采蜜蜂的搜索信息均可被观察蜂共享,在观察蜂的搜索中引入欧式距离以确定有效邻域,选择邻域内的最优解用以生成新蜜源。通过测试发现改进后的算法收敛速度明显提高,提高幅度高达50%。
Abstract:
Bee colony accelerating convergence technique is studied in order to improve the convergence speed and accuracy,and engi-neering application value of the artificial bee colony algorithm. It is discovered that imperfection is existed in standard ABC algorithm when coping with the share of the information which is assembled by employed bees. This flaw leads to the deterioration of the algorithm. In this paper,the share strategy is modified with the aim to make use of the data collected by multiple employed bees which are in certain neighborhood. Euclidean distance is introduced to identify the valid neighborhood,and the best solution in the region is selected to pro-duce new nectar. Numerical experiment indicates that the convergence speed of the modified algorithm is improved,about 50% better than the original one.

相似文献/References:

[1]何志明 马苗.基于灰色关联分析和人工蜂群算法的图像匹配方法[J].计算机技术与发展,2010,(10):78.
 HE Zhi-ming,MA Miao.Fast Image Matching Approach Based on Grey Relational Analysis and Artificial Bee Colony Algorithm[J].,2010,(04):78.
[2]贾晓倩 刘方爱.基于最近邻搜索算法分组式P2P网络拓扑模型[J].计算机技术与发展,2010,(11):100.
 JIA Xiao-qian,LIU Fang-ai.A Topology Model Based on Nearest Neighbor for P2P Group Networks[J].,2010,(04):100.
[3]李林菲 马苗.基于ABC算法的逻辑推理题快速求解方法[J].计算机技术与发展,2011,(06):125.
 LI Lin-fei,MA Miao.Artificial Bee Colony Algorithm Based Solution Method for Logic Reasoning[J].,2011,(04):125.
[4]于君 刘弘.基于ABC算法的群体动画研究与应用[J].计算机技术与发展,2011,(10):222.
 YU Jun,LIU Hong.Research and Implementation of Group Animation Based on Artificial Bee Colony Algorithm[J].,2011,(04):222.
[5]张玲,许亮,姜华.Web采集中信息组合自学习的研究[J].计算机技术与发展,2013,(11):216.
 ZHANG Ling,XU Liang,JIANG Hua.Research on Self-learning of Information Combination in Web Collecting[J].,2013,(04):216.
[6]贾冀婷. 基于K均值PSOABC的测试用例自动生成方法[J].计算机技术与发展,2015,25(06):12.
 JIA Ji-ting. Automatic Testcase Generation Method Based on PSOABC and K-means Clustering Algorithm[J].,2015,25(04):12.
[7]刘立群[],韩俊英[],代永强[],等. 果蝇优化算法优化性能对比研究[J].计算机技术与发展,2015,25(08):94.
 LIU Li-qun[],HAN Jun-ying[],DAI Yong-qiang[],et al. Comparative Study on Optimization Performance of Fruit Fly Optimization Algorithm [J].,2015,25(04):94.
[8]王野,周井泉,常瑞云. 基于知识的人工蜂群服务组合优化算法[J].计算机技术与发展,2016,26(05):46.
 WANG Ye,ZHOU Jing-quan,CHANG Rui-yun. Artificial Bee Colony Algorithm for Service Composition Based on Knowledge[J].,2016,26(04):46.
[9]娄艳秋[],庄毅[],顾晶晶[],等. 协同干扰环境下基于IMOABC的任务调度方法[J].计算机技术与发展,2017,27(11):46.
 LOU Yan-qiu[],ZHUANG Yi[],GU Jing-jing[],et al. A Task Scheduling Method Based on IMOABC in Collaboration Interference Environment[J].,2017,27(04):46.
[10]蒲国林,刘笃晋.基于改进神经网络的环境空气质量预测[J].计算机技术与发展,2018,28(09):181.[doi:10.3969/ j. issn.1673-629X.2018.09.037]
 PU Guo-lin,LIU Du-jin.Ambient Air Quality Prediction Based on Improved Neural Network[J].,2018,28(04):181.[doi:10.3969/ j. issn.1673-629X.2018.09.037]

更新日期/Last Update: 1900-01-01