[1]刘瑞杰,史原,李孝贵,等.提高三峡船闸实际通过能力的贪心模拟退火算法[J].计算机技术与发展,2014,24(03):246-249.
 LIU Rui-jie,SHI Yuan,LI Xiao-gui,et al.Greedy Simulated Annealing Algorithm of Improving Actual Navigation Capacity of Yangtze Gorges Ship Lock[J].,2014,24(03):246-249.
点击复制

提高三峡船闸实际通过能力的贪心模拟退火算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年03期
页码:
246-249
栏目:
应用开发研究
出版日期:
2014-03-31

文章信息/Info

Title:
Greedy Simulated Annealing Algorithm of Improving Actual Navigation Capacity of Yangtze Gorges Ship Lock
文章编号:
1673-629X(2014)04-0246-04
作者:
刘瑞杰史原李孝贵王立娟
大连科技学院 信息科学系
Author(s):
LIU Rui-jieSHI YuanLI Xiao-guiWANG Li-juan
关键词:
贪心算法模拟退火船闸实际通过能力影响因素三峡船闸
Keywords:
greedy algorithmsimulated annealingship lock actual navigation capacityinfluencing factorsthe Yangtze gorges ship lock
分类号:
TP391.7
文献标志码:
A
摘要:
三峡工程的建设及投入运行,极大地促进了长江中上游经济和水运事业的发展,同时也使处于咽喉地位的三峡船闸面临巨大的压力,三峡船闸通过能力相对不足的问题日益突出。为了提高三峡现有船闸的通过能力,保障船舶过闸便捷、安全、通畅和有序,在分析船闸通过能力影响因素的基础上,给出了一种提高船闸实际通过能力的贪心模拟退火算法。实验结果表明该算法是有效的,这不仅为解决该问题提供了新的思路和方法,同时也提供了技术支撑。
Abstract:
The completion and using of the Yangtze gorges project have greatly improved the Yangtze river shelter-forest economy and water transport,meanwhile the great pressure has been brought to the Yangtze gorges ship lock,the navigation capacity of the Yangtze gorges ship lock is insufficient increasingly. In order to improve the navigation capacity of the Yangtze gorges ship lock,and ensure navi-gation through ship lock to be convenient,safe,smooth and orderly,based on analyzing the navigation capacity of the ship lock and its main influencing factors,propose a greedy simulated annealing algorithm to improve the ship lock actual navigation capacity. Computa-tional results show that the algorithm is effective,it not only offers a new way to solve this problem,but also provides technical support.

相似文献/References:

[1]狄翠萍 申闫春 刘双.大规模油藏三维显示系统关键技术的研究[J].计算机技术与发展,2010,(02):237.
 DI Cui-ping,SHEN Yan-chun,LIU Shuang.Study of Key Technologies of Large - Scale 3 - D Display System[J].,2010,(03):237.
[2]张捍东 廖天红 岑豫皖.用模拟退火思想的粒子群算法实现图像分割[J].计算机技术与发展,2010,(05):83.
 ZHANG Han-dong,LIAO Tian-hong,CEN Yu-wan.Image Segmentation Through Particle Swarm Optimization Based on Simulated Annealing[J].,2010,(03):83.
[3]杜秀全 程家兴.基于退火进化算法的机器人足球策略研究[J].计算机技术与发展,2008,(02):101.
 DU Xiu-quan,CHENG Jia-xing.Study on Soccer Robot Strategy Based on Annealing Evolution Algorithm[J].,2008,(03):101.
[4]路景 周春艳.基于遗传算法的混合优化策略研究[J].计算机技术与发展,2007,(03):144.
 LU Jing,ZHOU Chun-yan.Study of Hybrid Optimization Strategy Based on Genetic Algorithm[J].,2007,(03):144.
[5]王京 于舒娟.模拟退火混沌粒子群算法的盲检测[J].计算机技术与发展,2011,(01):35.
 WANG Jing,YU Shu-juan.Blind Detection Based on Simulated Annealing Chaotic Particle Swarm Optimization[J].,2011,(03):35.
[6]李龙澍 曹珣 王凡.基于模拟退火遗传算法的测试数据生成研究[J].计算机技术与发展,2011,(04):85.
 LI Long-shu,CAO Xun,WANG Fan.Test Data Generation Using Simulated Annealing Genetic Algorithm[J].,2011,(03):85.
[7]路立伟 王亮 梁勇 范荣双.模拟退火算法在频率指配中的应用优化[J].计算机技术与发展,2011,(07):121.
 LU Li-wei,WANG Liang,LIANG Yong,et al.Optimization of Simulated Annealing in Solving Frequency Assignment Problem[J].,2011,(03):121.
[8]胡建悦 严洪森 刘楠楠.基于模拟退火粒子群算法的AHP排序权值计算[J].计算机技术与发展,2012,(06):14.
 HU Jian-yue,YAN Hong-sen,LIU Nan-nan.Computing Rank Weights in AHP of Simulated Annealing-particle Swarm Optimization Algorithm[J].,2012,(03):14.
[9]袁廷磊,吾守尔·斯拉木.图的最优矩阵构建研究[J].计算机技术与发展,2013,(07):151.
 YUAN Ting-lei,WUSHOUER Silamu.Research on Optimal Matrix Construction of Diagram[J].,2013,(03):151.
[10]刘洁,李目,周少武.一种混沌混合粒子群优化RBF神经网络算法[J].计算机技术与发展,2013,(08):181.
 LIU Jie[],LI Mu[],ZHOU Shao-wu[].An Algorithm of Chaotic Hybrid Particle Swarm Optimization Based on RBF Neural Network[J].,2013,(03):181.

更新日期/Last Update: 1900-01-01