[1]王庚,宋传超,盛玉晓,等.基于标签传播的社区挖掘算法研究综述[J].计算机技术与发展,2013,(12):69-73.
 WANG Geng,SONG Chuan-chao,SHENG Yu-xiao,et al.Research Summary on Communities Mining Algorithm Based on Label Propagation[J].,2013,(12):69-73.
点击复制

基于标签传播的社区挖掘算法研究综述()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年12期
页码:
69-73
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Research Summary on Communities Mining Algorithm Based on Label Propagation
文章编号:
1673-629X(2013)12-0069-05
作者:
王庚宋传超盛玉晓王童童李盛恩
山东建筑大学 计算机科学与技术学院
Author(s):
WANG GengSONG Chuan-chaoSHENG Yu-xiaoWANG Tong-tongLI Sheng-en
关键词:
社会网络标签传播社区挖掘重叠社区
Keywords:
social networkslabel propagationcommunity miningoverlapping community
文献标志码:
A
摘要:
社会网络由于其流行程度已经成为众多学者的研究热点。通过社区挖掘算法可以发现存在于社会网络中的潜在社区,而重叠社区挖掘则可以挖掘出更具有现实意义的社区结构。但是在研究中社会网络所包含的庞大数据量又会为之带来种种不便,因此快速的社区挖掘算法就受到了越来越多的重视。基于标签传播的社区挖掘算法具有近乎线性的时间复杂度。文中将从多方面研究目前基于标签传播的社区挖掘算法的优劣,并且详细分析基于标签传播算法在以后研究中的改进思路
Abstract:
Social networks have been a hot area of research because of its popularity. Discover potential communities in social networks through community mining,and find community structures that have more realistic significance through detecting overlapping communi-ties. However there is lot of inconvenience because of the sheer amount of data in social networks. So fast algorithm for mining communi-ty are getting more and more attention. The algorithms based on the thoughts of label propagation have nearly linear time complexity. In this paper,study the algorithms based on the thoughts of label propagation from various aspects and analyze those algorithms' improve-ment ideas in the future research

相似文献/References:

[1]陈加忠 鞠增伟 陈常念 李榕 夏涛 王冼.基于社会网络特性的机会计算服务平台[J].计算机技术与发展,2011,(06):197.
 CHEN Jia-zhong,JU Zeng-wei,CHEN Chang-nian,et al.Opportunistic Computing Service Platform Based on Social Network Properties[J].,2011,(12):197.
[2]殷凤霞.社会网络中基于内容语义的新闻推荐方法研究[J].计算机技术与发展,2013,(10):253.
 YIN Feng-xia.Research on Method of News Recommendation Based on Content Semantic in Social Network[J].,2013,(12):253.
[3]王伟,李玲娟. 一种基于聚类的社团划分算法[J].计算机技术与发展,2015,25(10):119.
 WANG Wei,LI Ling-juan. A Clustering-based Community Division Algorithm[J].,2015,25(12):119.
[4]孟彩霞,李楠楠,张 琰.基于复杂网络的社区发现算法研究[J].计算机技术与发展,2020,30(01):82.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 015]
 MENG Cai-xia,LI Nan-nan,ZHANG Yan.Research on Community Detection Algorithm Based on Complex Network[J].,2020,30(12):82.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 015]
[5]张 猛,李玲娟.稳定的标签传播社团划分算法研究[J].计算机技术与发展,2020,30(01):129.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 023]
 ZHANG Meng,LI Ling-juan.Research on Stable Label Propagation Community Division Algorithm[J].,2020,30(12):129.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 023]
[6]郭茂林,孔 兵.基于 TOPSIS 权重的社会网络影响力最大化[J].计算机技术与发展,2022,32(07):15.[doi:10. 3969 / j. issn. 1673-629X. 2022. 07. 003]
 GUO Mao-lin,KONG Bing.Maximization of Social Network Influence Based on TOPSIS Weight[J].,2022,32(12):15.[doi:10. 3969 / j. issn. 1673-629X. 2022. 07. 003]

更新日期/Last Update: 1900-01-01