[1]张昀,于舒娟,王京.基于自调节粒子群算法的盲检测[J].计算机技术与发展,2013,(11):59-61.
 ZHANG Yun,YU Shu-juan,WANG Jing.Blind Detection Based on Self-adaptive Particle Swarm Optimization[J].,2013,(11):59-61.
点击复制

基于自调节粒子群算法的盲检测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年11期
页码:
59-61
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Blind Detection Based on Self-adaptive Particle Swarm Optimization
文章编号:
1673-629X(2013)11-0059-03
作者:
张昀于舒娟王京
南京邮电大学 电子科学与工程学院
Author(s):
ZHANG YunYU Shu-juanWANG Jing
关键词:
盲检测自调节因子粒子群算法
Keywords:
blind detectionself-adjustment factorPSO
文献标志码:
A
摘要:
以往基于粒子群优化的盲算法能成功实现信号盲检测,但具有算法收敛速度慢、容易陷入局部最小的缺点。文中通过分析粒子群算法的机能及参数的设置,提出一种改进的基于自调节粒子群优化的盲检测算法。算法构成思想是:基于MIMO系统的盲检测系统模型将盲检测问题转化为二次优化问题,利用改进的自调节粒子群优化算法对此优化问题进行寻优。仿真表明,改进算法具有全局收敛性好、收敛速度快、误码率低的优点,能够更好地解决盲检测问题
Abstract:
The blind algorithm based on Particle Swarm Optimization ( PSO) can achieve signal blind detection successfully,but has some defects such as converging to local optimum or slow convergence. By analyzing the performance of the PSO algorithm and the parameter setting,an improved blind algorithm based on self-adjustment PSO algorithm is presented. The thoughts are through blind detection sys-tem model based on MIMO system,translated the blind detection problem into quadratic optimization problem,and the new PSO algo-rithm was used to solve the problem. The experiment results show that the new PSO has good features such as strong global search capa-bility,rapid convergence and short computation time,which confirms the validity and feasibility of this approach

相似文献/References:

[1]马懿 张政保 冯帆 刘爱珍.基于高阶统计矩的特征提取优化算法[J].计算机技术与发展,2008,(12):123.
 MA Yi,ZHANG Zheng-bao,FENG Fan,et al.Optimized Algorithm for Feature Extraction Based on Higher Order Statistical Moments[J].,2008,(11):123.
[2]于帅珍.基于DWT可定位和抵御剪切的水印方案[J].计算机技术与发展,2008,(12):150.
 YU Shuai-zhen.Watermark Algorithm Based on DWT Against Cropping[J].,2008,(11):150.
[3]杨磊 于舒娟.基于精英策略的逆向蚁群优化盲检测算法[J].计算机技术与发展,2010,(12):90.
 YANG Lei,YU Shu-juan.Blind Detection Based on a Converse Ant Algorithm Using Elitist Strategy[J].,2010,(11):90.
[4]王京 于舒娟.模拟退火混沌粒子群算法的盲检测[J].计算机技术与发展,2011,(01):35.
 WANG Jing,YU Shu-juan.Blind Detection Based on Simulated Annealing Chaotic Particle Swarm Optimization[J].,2011,(11):35.
[5]赵娟 杨钒.一种用于图像内容认证的半脆弱数字水印[J].计算机技术与发展,2011,(01):151.
 ZHAO Juan,YANG Fan.A Semi-fragile Digital Watermark for Image Content Authentication[J].,2011,(11):151.
[6]黄子龙 张政保 文家福 刘会英.基于Krawtchouk不变矩的复制-粘贴篡改盲检测算法[J].计算机技术与发展,2012,(02):168.
 HUANG Zi-long,ZHANG Zheng-bao,WEN Jia-fu,et al.A Blind Forensic Algorithm for Detecting Copy-Paste Images Based on Krawtchouk Invariant Moments[J].,2012,(11):168.
[7]汪金伟 于舒娟 张昀.基于改进蚁群优化的盲均衡算法研究[J].计算机技术与发展,2012,(04):141.
 WANG Jin-wei,YU Shu-juan,ZHANG Yun.Research of Blind Equalization Algorithm Based on Improved Ant Colony Optimization[J].,2012,(11):141.
[8]冯迪 于舒娟 张昀.一种改进激活函数的Hopfield盲检测算法[J].计算机技术与发展,2012,(12):207.
 FENG Di,YU Shu-juan,ZHANG Yun.Blind Detection Algorithm of Hopfield Neural Network With Improved Activation Function[J].,2012,(11):207.
[9]蔡晴红,于舒娟,张昀.基于量子遗传优化的盲检测算法[J].计算机技术与发展,2013,(02):57.
 CAI Qing-hong,YU Shu-juan,ZHANG Yun.Blind Detection Algorithm Based on Quantum Genetic Optimization[J].,2013,(11):57.
[10]于舒娟,张昀,杨磊.基于改进蚁群优化的盲检测算法[J].计算机技术与发展,2013,(11):74.
 YU Shu-juan,ZHANG Yun,YANG Lei.An Blind Detection Algorithm Based on Improved Ant Colony Algorithm[J].,2013,(11):74.

更新日期/Last Update: 1900-01-01