[1]杨宏,胡琛琛,周井泉.基于模糊控制的神经元PID主动队列管理[J].计算机技术与发展,2013,(10):95-98.
 YANG Hong,HU Chen-chen,ZHOU Jing-quan.Neuron PID Active Queue Management Based on Fuzzy Control[J].,2013,(10):95-98.
点击复制

基于模糊控制的神经元PID主动队列管理()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年10期
页码:
95-98
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Neuron PID Active Queue Management Based on Fuzzy Control
文章编号:
1673-629X(2013)10-0095-04
作者:
杨宏胡琛琛周井泉
南京邮电大学 电子科学与工程学院
Author(s):
YANG HongHU Chen-chenZHOU Jing-quan
关键词:
拥塞控制神经元自适应模糊控制主动队列管理
Keywords:
congestion controlneuronself-adaptivefuzzy controlactive queue management
文献标志码:
A
摘要:
文中主要研究网络拥塞控制机制中的主动队列管理( AQM)算法。针对传统PID主动队列管理算法中参数固定、不能实时调整、无法适应复杂多变的非线性网络等缺点,将模糊控制模块与单神经元自适应PID(SNAPID)相结合,提出了一种改进的主动队列管理算法-基于速率模糊控制的神经元自适应PID( RSNAPID)算法。该算法利用模糊控制模块,对单神经元的比例系数进行在线调整,并对单神经元的学习速率进行了相应的改进。利用NS2对PI算法、SNAPID算法以及RSNAPID算法进行了比较,仿真结果表明RSNAPID算法具有更好的收敛性、稳定性以及鲁棒性
Abstract:
It mainly studies the active queue management algorithm( AQM) of the network congestion control mechanisms. To solve the disadvantages of traditional PID active queue management,such as fixed parameters,not self-setting,not adapting to complex network en-vironment and so on,combining the fuzzy control module with single neuron adaptive PID( SNAPID) ,an improved active queue manage-ment algorithm,named neural-network adaptive proportional integral differential ( PID) AQM algorithm based on input rate fuzzy control ( RSNAPID) ,is proposed. This algorithm makes the neural proportional coefficient to auto-tuned online and improves the part of neural learning rate. Compared with other active queue management algorithm such as PI algorithm,SNAPID algorithm,RSNAPID algorithm, the simulation results demonstrate that RSNAPID algorithm has better convergence,stability and robustness

相似文献/References:

[1]孔金生,任平英.TCP网络拥塞控制研究[J].计算机技术与发展,2014,24(01):43.
 KONG Jin-sheng,REN Ping-ying.Summary of TCP Network Congestion Control Research[J].,2014,24(10):43.
[2]忽海娜 张虎 王中立.DDoS攻击下RED算法的仿真研究[J].计算机技术与发展,2010,(02):178.
 HU Hai-na,ZHANG Hu,WANG Zhong-li.Simulation Study of RED Algorithm under DDoS[J].,2010,(10):178.
[3]印石林 姚放吾.一种基于Ad hoc网络的拥塞检测方法[J].计算机技术与发展,2010,(06):171.
 YIN Shi-lin,YAO Fang-wu.A Congestion Detecting Method Based on Ad hoc Network[J].,2010,(10):171.
[4]陈柏秀 谭献海 朱效稳.自相似流量下自适应AQM算法性能研究[J].计算机技术与发展,2009,(09):28.
 CHEN tai-xiu,TAN Xian-hai,ZHU Xiao-wen.Research on Performance of Adaptive AQM Algorithm of Self- Similar Traffic[J].,2009,(10):28.
[5]忽海娜 冯浩 王中立.DDoS攻击下高带宽聚类的控制[J].计算机技术与发展,2008,(04):155.
 HU Hai-na,FENG Hao,WANG Zhong-li.Controlling High Bandwidth Aggregates under DDoS[J].,2008,(10):155.
[6]田张志 王文国 吴国栋 晁瑞兰 刘春艳.OBS中TCP业务的分段指示拥塞控制策略[J].计算机技术与发展,2008,(09):76.
 TIAN Zhang-zhi,WANG Wen-guo,WU Guo-dong,et al.A Stage- Based Congestion Notice Strategy on TCP over OBS[J].,2008,(10):76.
[7]李新国.基于拥塞控制的AQM算法研究[J].计算机技术与发展,2007,(05):199.
 LI Xin-guo.Algorithm Research of AQM Based on Congestion Control[J].,2007,(10):199.
[8]冯坚 杨路明.状态无关主动队列管理算法博弈的Nash均衡[J].计算机技术与发展,2007,(07):127.
 FENG Jian,YANG Lu-ming.Nash Equilibria in Oblivious Active Queue Management Game[J].,2007,(10):127.
[9]徐航宇 罗键.TCP-HY:优化TCP在混合IP网络环境中的效率[J].计算机技术与发展,2007,(11):4.
 XU Hang-yu,LUO Jian.TCP- HY:Improving TCP Performance in Hybrid IP Network[J].,2007,(10):4.
[10]曾晶萍 杨文俊 彭力 秦肖臻 汪秉文.TCP友好速率控制协议的分析及应用[J].计算机技术与发展,2007,(01):210.
 ZENG Jing-ping,YANG Wen-jun,PENG Li,et al.Analysis and Application of TCP- Friendly Rate Control Protocol[J].,2007,(10):210.
[11]杨宏,胡琛琛,周井泉.单神经元自适应PID主动队列控制算法的改进[J].计算机技术与发展,2013,(05):93.
 YANG Hong,HU Chen-chen,ZHOU Jing-quan.Improvement of Neural-network Adaptive PID Active Queue Control Algorithm[J].,2013,(10):93.

更新日期/Last Update: 1900-01-01