[1]闵锋,鲁统伟,邹旭.自适应子空间选择方法研究[J].计算机技术与发展,2013,(10):83-86.
 MIN Feng,LU Tong-wei,ZOU Xu.Research on Adaptive Subspaces Selection Method[J].,2013,(10):83-86.
点击复制

自适应子空间选择方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年10期
页码:
83-86
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Research on Adaptive Subspaces Selection Method
文章编号:
1673-629X(2013)10-0083-04
作者:
闵锋鲁统伟邹旭
武汉工程大学 智能机器人湖北省重点实验室
Author(s):
MIN FengLU Tong-weiZOU Xu
关键词:
子空间选择线性判别分析K-均值聚类
Keywords:
subspaces selectionlinear discriminant analysisK-means clustering
文献标志码:
A
摘要:
由于维数灾难的原因,高维空间的数据聚类是一个具有挑战性的问题。文中提出了一种自适应子空间选择的方法来解决这一难题。该方法采用局部线性嵌入的方法将高维数据映射到低维子空间上,然后采用两步迭代的方法自适应地选择最具有判别力的子空间:固定子空间不变,用K-均值聚类的方法产生类别的标号;固定类别的标号不变,用线性判别分析的方法将样本映射到低维子空间进行子空间选择。通过反复迭代,样本在低维子空间进行有效聚类而避免了维数灾难,同时子空间自适应地调整到全局最优。大量的实验结果表明,该方法聚类效果优于传统的K-均值聚类
Abstract:
Clustering in high dimensional datasets is a challenging problem due to the curse of dimensionality. In this paper,present an a-daptive subspaces selection approach to solve this problem. Datasets are projected into lower dimensional subspace through locally linear embedding. Then two iterative steps are implemented to adaptively select the most discriminative subspace:fixing the subspaces,K-means clustering is performed to generate cluster labels;fixing cluster labels,linear discriminant analysis is performed to do subspaces selection. Through iterative steps,clusters are discovered in the lower dimensional subspaces to avoid the curse of dimensionality,while the sub-spaces are adaptively re-adjusted for global optimality. Extensive experimental results show the benefits of the approach versus traditional K-means clustering

相似文献/References:

[1]黄国宏 刘刚.一种新的基于DCT变换的线性判别分析[J].计算机技术与发展,2008,(06):97.
 HUANG Guo-hong,LIU Gang.A Novel Linear Discriminant Analysis Based on DCT[J].,2008,(10):97.
[2]邓炳荣 伍世元 武琳 邵雅雯 李江勇.一种基于计算机嗅觉的卷烟等级识别方法[J].计算机技术与发展,2011,(11):177.
 DENG Bing-rong,WU Shi-yuan,WU Lin,et al.Application of Electronic Nose in Discrimination of Different Levels Cigarette[J].,2011,(10):177.
[3]赵越,徐鑫,乔利强.张量线性判别分析算法研究[J].计算机技术与发展,2014,24(01):73.
 ZHAO Yue[,XU Xin[],QIAO Li-qiang[].Research of Tensor Linear Discriminant Analysis Algorithm[J].,2014,24(10):73.
[4]陈惠勤,骆德汉. 基于扩散映射和LDA的辛味中药材鉴别研究[J].计算机技术与发展,2015,25(05):192.
 CHEN Hui-qin,LUO De-han. Research on Classification of Pungent Chinese Herbal Medicines Based on Diffusion Maps and LDA[J].,2015,25(10):192.
[5]郑继亭,李 珺.基于WMSNs 的温室植物病害远程监测系统[J].计算机技术与发展,2018,28(01):174.[doi:10.3969/ j. issn.1673-629X.2018.01.037]
 ZHENG Ji-ting,LI Jun.Remote Monitoring System for Greenhouse Plant Disease Based on WMSNs[J].,2018,28(10):174.[doi:10.3969/ j. issn.1673-629X.2018.01.037]
[6]谢群辉,田 青.权重随机正交化的极速非线性判别分析网络[J].计算机技术与发展,2018,28(01):23.[doi:doi:10.3969/ j. issn.1673-629X.2018.01.005]
 XIE Qun-hui,TIAN Qing.Nonlinear Discriminant Analysis Networks with Random and Orthogonalized Input Weights[J].,2018,28(10):23.[doi:doi:10.3969/ j. issn.1673-629X.2018.01.005]
[7]肖 梁,韩 璐,魏鹏飞,等.基于 Bagging 集成学习的多集类不平衡学习[J].计算机技术与发展,2021,31(10):1.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 001]
 XIAO Liang,HAN Lu,WEI Peng-fei,et al.Bagging Ensemble Learning Based Multiset Class-imbalanced Learning[J].,2021,31(10):1.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 001]

更新日期/Last Update: 1900-01-01