[1]邓宗强,曾碧卿.一种新参数优化算法及其在流量预测中的应用[J].计算机技术与发展,2013,(10):36-40.
 DENG Zong-qiang[],ZENG Bi-qing[].A New Parameter Optimization Algorithm and Its Application in Traffic Prediction[J].,2013,(10):36-40.
点击复制

一种新参数优化算法及其在流量预测中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年10期
页码:
36-40
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
A New Parameter Optimization Algorithm and Its Application in Traffic Prediction
文章编号:
1673-629X(2013)10-0036-05
作者:
邓宗强1曾碧卿2
[1]华南师范大学 计算机学院;[2]华南师范大学南海校区 信息工程与技术系
Author(s):
DENG Zong-qiang[1]ZENG Bi-qing[2]
关键词:
量子粒子群算法参数优化小波变换最小二乘支持向量机流量预测
Keywords:
quantum-behaved particle swarm optimizationparameters optimizationwavelet transformationleast squares support vector machinestraffic prediction
文献标志码:
A
摘要:
为了提高网络流量预测的精度,提出先进行小波变换后利用LS-SVM的网络流量预测模型,对于LS-SVM参数的优化,提出一种基于模拟退火算法的自适应混沌量子粒子群算法( AS-QPSO)。该算法在量子粒子群算法的基础上加入了自适应和混沌特性,使算法具有动态自适应性,改善算法的全局寻优能力,再引入模拟退火算法避免陷入局部最优,使算法具有更好的收敛性和稳定性。实验结果表明:与其他算法优化的LS-SVM模型相比,该模型具有较好的泛化能力﹑更高的预测精度以及很好的稳定性
Abstract:
For improving the prediction accuracy of network traffic,a new network traffic prediction model is proposed based on wavelet transform and optimized LS-SVM. To optimize the parameters of LS-SVM,a kind of adaptive chaos quantum-behaved particle swarm optimization based on simulated annealing algorithm ( AS-QPSO) is proposed. The algorithm joins adaptive and chaotic characteristics based on QPSO,making it dynamic adaption,improving the capacity of the global optimization. Then the simulated annealing algorithm is introduced to avoid falling into local optimum,the algorithm has better convergence and stability. Experimental results show that com-pared with other algorithm optimized LS-SVM model,the proposed model is more efficient with higher precision,better generalization performance and stability

相似文献/References:

[1]江善和 江巨浪 吴磊.基于粒子群算法的一种非线性PID控制器[J].计算机技术与发展,2007,(04):71.
 JIANG Shan-he,JIANG Ju-lang,WU Lei.A Nonlinear PID Controller Based on Particle Swarm Tuning Algorithm[J].,2007,(10):71.
[2]邹丽珊 陈振洲 洪洲.复杂动力学模型参数优化问题的协同进化算法[J].计算机技术与发展,2011,(08):129.
 ZOU Li-shan,CHEN Zhen-zhou,HONG Zhou.Cooperative Co-Evolutionary Algorithm for Optimization of Kinetic Parameters[J].,2011,(10):129.
[3]徐迪 刘瑞兰.基于QPSO算法的无线传感器定位研究[J].计算机技术与发展,2012,(02):41.
 XU Di,LIU Rui-lan.Wireless Sensor Networks Location Study Based on QPSO[J].,2012,(10):41.
[4]王萍萍,王翰虎.一种支持向量机参数优化的GA-Powell算法[J].计算机技术与发展,2013,(02):15.
 WANG Ping-ping,WANG Han-hu.A GA-Powell Algorithm for Parameter Optimization of Support Vector Machine[J].,2013,(10):15.
[5]王健,韩志艳.基于正交实验设计的语音情感识别参数优化[J].计算机技术与发展,2013,(03):109.
 WANG Jian,HAN Zhi-yan.Parameter Optimization of Speech Emotion Recognition Based on Orthogonal Test Design[J].,2013,(10):109.
[6]王德金,蒋珉,汪峥.基于频率特性的控制器优化设计[J].计算机技术与发展,2014,24(05):1.
 WANG De-jin,JIANG Min,WANG Zheng.Optimization Design of Controller Based on Frequency Characteristic[J].,2014,24(10):1.
[7]朱然,李积英. 几种优化FCM算法聚类中心的方法对比及仿真[J].计算机技术与发展,2015,25(05):17.
 ZHU Ran,LI Ji-ying. Contrast and Simulation of Several Clustering Centers of Optimized FCM Algorithms [J].,2015,25(10):17.
[8]刘晓丽,熊良鹏. 改进的人工鱼群算法在机器人控制中的应用[J].计算机技术与发展,2015,25(05):200.
 LIU Xiao-li,XIONG Liang-peng. Application of Robot Control Using Improved Artificial Fish Swarm Algorithm[J].,2015,25(10):200.
[9]梁心雄[],黎德波[],罗胜平[]. 气象网络控制系统(NCS)的调度算法分析[J].计算机技术与发展,2015,25(08):134.
 LIANG Xin-xiong[],LI De-bo[],LUO Sheng-ping[]. Analysis of Scheduling Algorithm of Meteorological Network Control System[J].,2015,25(10):134.
[10]胡皞,常军,巩文龙,等. 基于混合概率的新型小波变异量子粒子群算法[J].计算机技术与发展,2016,26(01):78.
 HU Hao,CHANG Jun,GONG Wen-long,et al. A New Particle Swarm Optimization Algorithm of Wavelet Mutation Quantum-behaved Based on Mixed-probability[J].,2016,26(10):78.

更新日期/Last Update: 1900-01-01