[1]谢亮,廖宏建,杨玉宝.基于Kinect的姿势识别与应用研究[J].计算机技术与发展,2013,(05):258-260.
 XIE Liang,LIAO Hong-jian,YANG Yu-bao.Recognition and Application Research of Kinect-based Gesture[J].,2013,(05):258-260.
点击复制

基于Kinect的姿势识别与应用研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年05期
页码:
258-260
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Recognition and Application Research of Kinect-based Gesture
文章编号:
1673-629X(2013)05-0258-03
作者:
谢亮廖宏建杨玉宝
广州大学
Author(s):
XIE LiangLIAO Hong-jianYANG Yu-bao
关键词:
Kinect姿势识别人机交互骨骼追踪
Keywords:
Kinectgesture recognitionHCIskeleton track
文献标志码:
A
摘要:
姿势识别在三维虚拟实验中有着重要的作用,其作用体现在通过特定的姿势,控制程序准确地响应某一个操作来完成所对应的实验中的特定功能.为了便于使用,同时使得姿势识别的准确率提高,文中提出了利用Kinect传感器得到的二十多个关节点信息,通过确定每个关节点之间的欧氏距离与角度来判别特定姿势的方法.结果表明,使用此方法来识别姿势,识别率较高,且可随时扩展动作库来满足判定不同姿势的需求.本算法计算较为简单,效率高,能满足日常的虚拟实验要求.其便利的姿势库扩展性,有利于软件复用,提高虚拟实验的使用效率
Abstract:
Gesture recognition plays an important role in the three-dimensional virtual experiments,its role is to control program in re-sponding to an action by a particular posture. For ease of use and making the gesture recognition more accurate,propose the use of Kinect sensor to get over twenty articulation points information,and determine the Euclidean distance and angle of the articular point to distin-guish a particular posture. The results show that using this method can always expand action library to meet the needs of different postures of the decision. The algorithm is relatively simple to calculate and high efficiency,they are able to meet the day-to-day requirements of the experiment. It’s helpful to software reuse,and improves the efficiency in the use of virtual experiment

相似文献/References:

[1]黄露丹,严利民.基于Kinect深度数据的人物检测[J].计算机技术与发展,2013,(04):119.
 HUANG Lu-dan,YAN Li-min.Human Detection Based on Depth Data Acquired by Kinect[J].,2013,(05):119.
[2]苏 卓,喻春阳.基于2D 图像变换的虚拟试衣算法[J].计算机技术与发展,2018,28(02):24.[doi:10.3969/j.issn.1673-629X.2018.02.006]
 SU Zhuo,YU Chunyang.A Virtual Fitting Algorithm Based on 2D Image Transformation[J].,2018,28(05):24.[doi:10.3969/j.issn.1673-629X.2018.02.006]
[3]杨雷坤[] [],李绪志[],王红飞[]. 基于手势识别技术的遥操作系统的设计与实现[J].计算机技术与发展,2015,25(09):1.
 YANG Lei-kun[] [],LI Xu-zhi[],WANG Hong-fei[]. Design and Implementation of Tele-operations System Based on Gesture Recognition Technology[J].,2015,25(05):1.
[4]杨张振.基于Kinect 的摔倒行为研究[J].计算机技术与发展,2018,28(04):179.[doi:10.3969/ j. issn.1673-629X.2018.04.038]
 YANG Zhang-zhen.Research on Fall Detection Based on Kinect[J].,2018,28(05):179.[doi:10.3969/ j. issn.1673-629X.2018.04.038]
[5]王劲东,武频. 一种基于Kinect的指尖检测算法[J].计算机技术与发展,2016,26(07):14.
 WANG Jin-dong,WU Pin. An Algorithm of Fingertip Detection Based on Kinect[J].,2016,26(05):14.
[6]罗章[][][],谭海波[][],李晓风[][][],等. Kinect运动捕获技术在健康医疗中的应用研究[J].计算机技术与发展,2016,26(08):104.
 LUO Zhang[][][],TAN Hai-bo[][],LI Xiao-feng[][][],et al. Research on Application of Kinect Motion Capture Technology in Health Care[J].,2016,26(05):104.
[7]耿曼[][],钱国明[],王宇[]. 虚拟试衣系统服装图像匹配算法研究[J].计算机技术与发展,2017,27(01):126.
 GENG Man[] [],QIAN Guo-ming[],WANG Yu[]. Research on Clothing Image Matching of Virtual Fitting Room[J].,2017,27(05):126.
[8]庾晶[],葛军[],郭林[]. 基于骨架特征的人体动作分类研究[J].计算机技术与发展,2017,27(08):83.
 YU Jing[],GE Jun[],GUO Lin[]. Investigation on Human Action Classification Based on Skeleton Features[J].,2017,27(05):83.
[9]陈国军,孔李燕,张清伟,等.基于RGB-D三维点云目标分割[J].计算机技术与发展,2018,28(12):38.[doi:10.3969/j. issn.1673-629X.2018.12.008]
 CHEN Guojun,KONG Liyan,ZHANG Qingwei,et al.3D Point Cloud Target Segmentation Based on RGB-D Data[J].,2018,28(05):38.[doi:10.3969/j. issn.1673-629X.2018.12.008]
[10]陈国军,张清伟,李开悦,等.基于RGB—D树状结构物体三维重建[J].计算机技术与发展,2018,28(12):142.[doi:10.3969/j.issn.1673—629X.2018.12.030]
 CHENGuo-jan,ZHANG Qing-wei,LI Kaiyue,et al.3D Reconstruction of Tree Structure Based on RGB—D[J].,2018,28(05):142.[doi:10.3969/j.issn.1673—629X.2018.12.030]

更新日期/Last Update: 1900-01-01