[1]杨斌,陈桂明,杨庆.基于标准化自协方差相关函数的EMD改进算法[J].计算机技术与发展,2013,(05):67-70.
 YANG Bin,CHEN Gui-ming,YANG Qing.Improved EMD Algorithm Based on Standardized Auto-covariance Correlation Function[J].,2013,(05):67-70.
点击复制

基于标准化自协方差相关函数的EMD改进算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年05期
页码:
67-70
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Improved EMD Algorithm Based on Standardized Auto-covariance Correlation Function
文章编号:
1673-629X(2013)05-0067-04
作者:
杨斌陈桂明杨庆
第二炮兵工程大学 装备管理工程系
Author(s):
YANG BinCHEN Gui-mingYANG Qing
关键词:
经验模态分解端点效应标准化自协方差相关函数窗函数
Keywords:
empirical mode decomposition (EMD)end effectstandardized auto-covariance correlation functionwindow function
文献标志码:
A
摘要:
针对经验模态分解中存在的端点效应问题,提出了一种基于标准化自协方差相关窗函数的改进算法.利用标准化自协方差相关函数作为判定准则,在原信号内部寻找与端点处波形最相似,幅值差异最小的一段波形,用此段波形代替产生端点效应的包络线进行迭代.为有效降低分解误差,对延拓后的信号加窗函数,再进行经验模态分解.通过仿真和工程试验结果表明该算法可以有效地抑制端点效应,具有较高的分解精度,与其他几种常见算法相比具有算法简单、易于实现的特点
Abstract:
In order to solve the problem of end effect in EMD,a standardized covariance window function improved algorithm is pro-posed. A standardized self-covariance correlation function is used for the similarity criterion of the internal signal to find the endpoint waveform which is the smallest amplitude difference waveforms for data extension,instead of this segmentation waveform to produce the end effect to iterate the envelope. In order to reduce the decomposition error,the analyzed signal is preprocessed by multiplying with the defined window,and the EMD method is used to analyze the preprocessed signal. Simulation and experimental results show that the algorithm can effectively restrain the end effect. The algorithm is simple and easy to implement compared with several other common algorithm

相似文献/References:

[1]张晓宇 董增寿 宋仁旺.基于EMD和改进PSO-Elman神经网络的液压故障诊断[J].计算机技术与发展,2012,(04):29.
 ZHANG Xiao-yu,DONG Zeng-shou,SONG Ren-wang.Hydraulic System Fault Diagnosis Based on EMD and Modified PSO-Elman ANN[J].,2012,(05):29.
[2]王盈 董增寿.基于EMD和M-FSVM的泵车液压系统故障诊断[J].计算机技术与发展,2012,(06):179.
 WANG Ying,DONG Zeng-shou.Pump Truck Hydraulic System Fault Diagnosis Based on EMD and M-FSVM[J].,2012,(05):179.
[3]宋剑,邱晓晖. 采用支持向量回归抑制噪声的经验模态分解方法[J].计算机技术与发展,2014,24(11):122.
 SONG Jian,QIU Xiao-hui. Empirical Mode Decomposition Method Using Support Vector Regression to Suppress Noise[J].,2014,24(05):122.
[4]郭迪,沈洋洋,尹兵. 经验模式分解端点效应抑制方法的研究[J].计算机技术与发展,2016,26(03):89.
 GUO Di,SHEN Yang-yang,YIN Bing. Research on Method for End Effects Reduction of Empirical Mode Decomposition[J].,2016,26(05):89.
[5]刘悦,王芳. 基于优化组合核极限学习机的网络流量预测[J].计算机技术与发展,2016,26(06):73.
 LIU Yue,WANG Fang. Network Flow Prediction Based on Optimization Combined Kernel Extreme Learning Machine[J].,2016,26(05):73.
[6]杨庆 陈桂明 薛冬林.基于局部积分均值的经验模态分解改进算法[J].计算机技术与发展,2012,(02):22.
 YANG Qing,CHEN Gui-ming,XUE Dong-lin.Improved Algorithm for Empirical Mode Decomposition Based on Local Integral Mean[J].,2012,(05):22.

更新日期/Last Update: 1900-01-01