[1]聂建强,徐大林.基于模糊Q学习的分布式自适应交通信号控制[J].计算机技术与发展,2013,(03):171-174.
 NIE Jian-qiang,XU Da-lin.Distributed Adaptive Traffic Signal Control Based on Fuzzy Q-Learning[J].,2013,(03):171-174.
点击复制

基于模糊Q学习的分布式自适应交通信号控制()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年03期
页码:
171-174
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Distributed Adaptive Traffic Signal Control Based on Fuzzy Q-Learning
文章编号:
1673-629X(2013)03-0171-04
作者:
聂建强徐大林
江苏自动化研究所
Author(s):
NIE Jian-qiangXU Da-lin
关键词:
交通状态模糊控制Q学习分布式交通协调控制
Keywords:
traffic statefuzzy controlQ-Learningdistributed traffic coordinated control
文献标志码:
A
摘要:
针对当前城市区域交通状况复杂,难以用传统数学模型对其进行精确描述的特点,提出了一种基于模糊Q学习的分布式交通协调控制模型.该模型将每一个路口的交通控制系统看作一个独立的路口Agent,每一个路口Agent根据预测的当前相位和下一相位的交通流信息以及下游路段的交通流信息采用模糊Q学习算法决策出当前相位的绿灯时间,最后利用VISSIM4.2交通仿真平台进行了简单网络仿真实验,验证了该算法的可行性.仿真结果表明,该模型运用于交通控制中相比于定时控制能有效提高路网控制效率
Abstract:
As current urban area traffic condition is quite complex,which is difficult to be described accurately with traditional mathematic model,a distributed traffic coordinated control model based on fuzzy Q-Learning algorithm is proposed in this paper. The model regards the traffic control system at every junction as an individual junction Agent. The Agent uses fuzzy Q-Learning algorithm to determine the current phase time based on the local phase traffic flow information,next phase traffic flow information and downstream road traffic flow information which is predicted. At last,utilize VISSIM4. 2 simulation platform to simulate a simple traffic network and verify the algo-rithm. The results of simulation show that the model provided greatly improves the whole efficiency of road network traffic control over fixed time traffic control model

相似文献/References:

[1]蓝天 张学军 郑丽英.基于面向对象的汽车防撞控制系统的设计[J].计算机技术与发展,2010,(06):237.
 LAN Tian,ZHANG Xue-jun,ZHENG Li-ying.Design of Vehicle Crash-Avoiding Controlling System Based on Oriented-Object[J].,2010,(03):237.
[2]张海英 余臻 陈燕萍.模糊控制在智能交通灯监控系统中的应用[J].计算机技术与发展,2008,(03):181.
 ZHANG Hai-ying,YU Zhen,CHEN Yan-ping.Application of Fuzzy Control in Intelligent Traffic Lights Monitoring System[J].,2008,(03):181.
[3]黎惠成 曾碧 吴清泉 李愿.一种基于模糊控制的温度控制系统设计[J].计算机技术与发展,2009,(12):236.
 LI Hui-cheng,ZENG Bi,WU Qing-quan,et al.Design of a Temperature Control System Based on Fuzzy Control[J].,2009,(03):236.
[4]方良松 余春艳.基于数字荷尔蒙模型的信号灯配时优化的研究[J].计算机技术与发展,2009,(01):143.
 FANG Liang-song,YU Chun-yan.Digital Hormones Model- Based Optimal Time Assignment of Traffic Signal Cycle[J].,2009,(03):143.
[5]曹晓燕 于立萍[] 姚文韬[].基于粒子群算法的模糊控制在倒立摆中的应用[J].计算机技术与发展,2008,(06):151.
 CAO Xiao-yan,YU Li-ping,YAO Wen-tao.Particle Swarm Optimization in Fuzzy Control of an Inverted Pendulum[J].,2008,(03):151.
[6]李红岩 侯媛彬 王秀.实现温度自动调节的模糊控制器设计[J].计算机技术与发展,2006,(03):149.
 LI Hong-yan,HOU Yuan-bin,WANG Xiu.Design of Fuzzy Controller with Temperature Automatic Regulation[J].,2006,(03):149.
[7]夏明波 王晓川 金士尧 李祖秀 胡光强[].ASAS集群的模糊控制策略[J].计算机技术与发展,2006,(12):39.
 XIA Ming-bo,WANG Xiao-chuan,JIN Shi-yao,et al.Fuzzy Control Strategy in ASAS Cluster[J].,2006,(03):39.
[8]黄春平 蒋珉 柴干.高速公路的匝道与可变限速联合模糊控制[J].计算机技术与发展,2010,(12):38.
 HUANG Chun-ping,JIANG Min,CHAI Gan.Fuzzy Control for Ramp Metering and Variable Speed Limitation of Freeway[J].,2010,(03):38.
[9]王丽娟.基于α(t)调整函数的模糊控制器优化研究[J].计算机技术与发展,2011,(05):44.
 WANG Li-juan.Research on Fuzzy Controller Optimization Based on Adjusting Function[J].,2011,(03):44.
[10]张英 魏晓华 吉小康.基于模糊控制和功率控制的风电偏航研究[J].计算机技术与发展,2011,(06):212.
 ZHANG Ying,WEI Xiao-hua,JI Xiao-kang.Yaw Control System's Research of Wind Power Based on Fuzzy Control and Power Control[J].,2011,(03):212.

更新日期/Last Update: 1900-01-01