[1]舒琰,向阳,张骐,等.基于PageRank的微博排名MapReduce算法研究[J].计算机技术与发展,2013,(02):73-76.
 SHU Yan,XIANG Yang,ZHANG Qi,et al.Research on MapReduce Algorithm of Micro Blog Ranking Based on PageRank[J].,2013,(02):73-76.
点击复制

基于PageRank的微博排名MapReduce算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年02期
页码:
73-76
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Research on MapReduce Algorithm of Micro Blog Ranking Based on PageRank
文章编号:
1673-629X(2013)02-0073-04
作者:
舒琰1向阳1张骐2张熊熊[3]张君瑛[4]
[1]同济大学 电子与信息工程学院;[2]神华和利时信息技术有限公司;[3]上海证券交易所;[4]上海市陈家镇建设发展有限公司
Author(s):
SHU YanXIANG YangZHANG QiZHANG Xiong-xiongZHANG Jun-ying
关键词:
微博PageRankMapReduce
Keywords:
Micro blogPageRankMapReduce
文献标志码:
A
摘要:
随着社交网络的发展,对于其数据的挖掘与分析已经成为一个热门领域.在微博中,用户排名通常是单纯根据粉丝人数进行排列,而这种方法并不公正.针对这一问题,结合网页PageRank算法,提出了新的排名算法,以用户为节点,用户关系为有向边,建立概率转移矩阵,计算微博用户PageRank值.该算法能有效减少垃圾用户对微博排名的影响,来提高排名的公平性与准确性.实验测试在云环境下进行,结果显示了新的排名结果,与现有的微博粉丝排名相比,更加公平,具有一定的实用价值
Abstract:
With the development of social network service,mining and analyzing data from SNS is becoming an active area of science. In micro blog,the user ranking is based on the number of fans,but it is not very fair. In this paper,propose a new ranking algorithm based on web PageRank,in which use the data from Sina Weibo to yield a graph with nodes and edges. Then build a transition probability ma-trix to compute every user’s PageRank. This algorithm can make the user ranking more fair and more closely to reflect the reality. The experiments are conducted in cloud,which present a new ranking result and the algorithm has some practical value,comparing with the follower ranking

相似文献/References:

[1]陈学进.网络结构挖掘算法研究[J].计算机技术与发展,2009,(05):41.
 CHEN Xue-jin.Research of Algorithm for Web Structure Mining[J].,2009,(02):41.
[2]常庆 周明全 耿国华.基于PageRank和HITS的Web搜索[J].计算机技术与发展,2008,(07):77.
 CHANG Qing,ZHOU Ming-quan,GENG Guo-hua.PageRank and HITS- Based Web Search[J].,2008,(02):77.
[3]姜鑫维 赵岳松.Topic PageRank——一种基于主题的搜索引擎[J].计算机技术与发展,2007,(05):238.
 JIANG Xin-wei,ZHAO Yue-song.Topic PageRank:a Search Engine Based on Topic[J].,2007,(02):238.
[4]冯振明.Google核心——PageRank算法探讨[J].计算机技术与发展,2006,(07):82.
 FENG Zhen-ming.Google' s Core: Discussion about PageRank Algorithm[J].,2006,(02):82.
[5]李远方 邓世昆 闻玉彪 韩月阳.Hadoop-MapReduce下的PageRank矩阵分块算法[J].计算机技术与发展,2011,(08):6.
 LI Yuan-fang,DENG Shi-kun,WEN Yu-biao,et al.PageRank Matrix Partitioned Algorithm Using Hadoop-MapReduce[J].,2011,(02):6.
[6]樊同科,谢勇.一种混合搜索算法在智能Web中的应用[J].计算机技术与发展,2013,(08):220.
 FAN Tong-ke,XIE Yong.Application of a Hybrid Search Algorithm in Intelligent Web[J].,2013,(02):220.
[7]潘明慧,牛耘. 基于多线索混合词典的微博情绪识别[J].计算机技术与发展,2014,24(09):28.
 PAN Ming-hui,NIU Yun. Emotion Recognition of Micro-blogs Based on a Hybrid Lexicon[J].,2014,24(02):28.
[8]吴家皋,刘杰,钱科宇,等. 基于改进排序算法的用户查询优化的研究[J].计算机技术与发展,2015,25(07):49.
 WU Jia-gao,LIU Jie,QIAN Ke-yu,et al. Research on User’ s Query Optimization Based on Improved Sorting Algorithm[J].,2015,25(02):49.
[9]苏小英[][],孟环建[]. 基于神经网络的微博情感分析[J].计算机技术与发展,2015,25(12):161.
 SU Xiao-ying[][],MENG Huan-jian[]. Sentiment Analysis of Micro-blog Based on Neural Networks[J].,2015,25(02):161.
[10]李梦洁,邵曦.基于文本属性的微博用户相似度研究[J].计算机技术与发展,2018,28(05):17.[doi:10.3969/j.issn.1673-629X.2018.05.005]
 LI Meng-jie,SHAO Xi. Research on Micro-blog User Similarity Based on Text Similarity[J].,2018,28(02):17.[doi:10.3969/j.issn.1673-629X.2018.05.005]
[11]李 勇.一种改进的微博用户影响力分析算法[J].计算机技术与发展,2020,30(08):27.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 005]
 LI Yong.An Improved Algorithm of Microblog User Influence Analysis[J].,2020,30(02):27.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 005]

更新日期/Last Update: 1900-01-01