[1]曹黎侠.博弈均衡理论与算法在人才培养模型中的应用[J].计算机技术与发展,2013,(01):234-236.
 CAO Li-xia.Application of Game Theory and Algorithm for Talent Training Model[J].,2013,(01):234-236.
点击复制

博弈均衡理论与算法在人才培养模型中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年01期
页码:
234-236
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Application of Game Theory and Algorithm for Talent Training Model
文章编号:
1673-629X(2013)01-0234-03
作者:
曹黎侠
西安工业大学
Author(s):
CAO Li-xia
关键词:
博弈论人才培养纳什均衡
Keywords:
game theorytalent trainingNash equilibrium
文献标志码:
A
摘要:
为了适应社会的需求及就业市场的变化,为人才的培养模式提供科学的定量化的方法.以就业为导向,通过对人才的培养与社会的需求进行博弈分析,并针对就业为小康型的群体,建立了人才培养模式的博弈模型;最后运用博弈论均衡理论,开发出该模型的求解算法.在学校培养和社会需求的限定条件下,温饱型就业者会随机选择学习消耗函数最小值的培养模式;小康型就业者培养模式的选择和社会努力水平在点(p*,e*)双方达到了博弈均衡,保证了最低收益.通过算法示例及对博弈模型结果的分析,说明了该模型和求解算法是科学可行的、有效的,对各种人才的培养均有一定的借鉴意义
Abstract:
To meet the needs of society and job markets,there has provided a scientific quantitative approach for the talents training mode. It makes a game analysis between the talents training of universities and social needs with employment-oriented,and creates a universities students training mode's game model. Finally using equilibrium theory of game theory develops an algorithm of the model. The solution shows that within the constraints of universities' cultivation and job markets' needs,the would-be adequately-fed employers tend to adopt randomly the training pattern involving students' minimum energy consumption;the potential fairly well-off employers' choice of the rai-sing pattern and the society's effort level meet the balance in game at the point( p*,e* ),guarantee a minimum income. Algorithm ex-ample results show that the model is scientific,feasible and effective,there is a certain reference for the talents training of different kinds

相似文献/References:

[1]李磊 董健全.基于博弈论的P2P激励机制的研究与设计[J].计算机技术与发展,2009,(05):5.
 LI Lei,DONG Jian-quan.Research and Design of An Incentive Mechanism of P2P Based on Game Theory[J].,2009,(01):5.
[2]冯坚 王书田 林日光.一种TCP博弈模型的Nash均衡存在性分析与仿真[J].计算机技术与发展,2009,(11):76.
 FENG Jian,WANG Shu-tian,LIN Ri-guang.Analysis and Simulation to Existence of Nash Equilibria in a TCP Game[J].,2009,(01):76.
[3]张怡 刘高嵩 李章华 刘轲平.基于博弈论的P2P系统分析[J].计算机技术与发展,2007,(08):26.
 ZHANG Yi,LIU Gao-song,LI Zhang-hua,et al.Analysis on P2P System Based on Game Theory[J].,2007,(01):26.
[4]曹黎侠.博弈论在数学综合素质培养机制中的应用[J].计算机技术与发展,2012,(02):189.
 CAO Li-xia.Game Theory Application in Mathematical Mode of Overall Quality of Cultivation[J].,2012,(01):189.
[5]刘冰 万佑红.CDMA系统中基于博弈论的速率与功率联合控制[J].计算机技术与发展,2012,(11):53.
 LIU Bing,WAN You-hong.Joint Control of Rate and Power in CDMA System Based on Game Theory[J].,2012,(01):53.
[6]黄德文,周井泉.基于价格的认知网络频谱共享博弈论模型[J].计算机技术与发展,2013,(08):66.
 HUANG De-wen,ZHOU Jing-quan.Cognitive Network Spectrum Sharing Game Theory Model Based on Price[J].,2013,(01):66.
[7]曹黎侠.地区环境污染的监管模型与流程设计[J].计算机技术与发展,2014,24(04):200.
 CAO Li-xia.Design of Regulation Model and Process of Regional Environmental Pollution[J].,2014,24(01):200.
[8]刘雪亮,胡晓辉. 一种改进的社会网络动态信任模型[J].计算机技术与发展,2016,26(06):51.
 LIU Xue-liang,HU Xiao-hui. An Improved Dynamic Trust Model in Social Network[J].,2016,26(01):51.
[9]李亚玲. 密集飞蜂窝网中基于博弈论的最佳功率分配法[J].计算机技术与发展,2016,26(10):169.
 LI Ya-ling. Optimal Power Allocation Strategy Based on Stackelberg Game Approach in Dense Femtocell Networks[J].,2016,26(01):169.
[10]余莎莎[],王友国[],朱亮[]. 基于网络博弈论的谣言扩散建模研究[J].计算机技术与发展,2017,27(04):6.
 YU Sha-sha[],WANG You-guo[],ZHU Liang[]. Investigation on Rumor Diffusion Modeling with Network Game Theory[J].,2017,27(01):6.

更新日期/Last Update: 1900-01-01