[1]徐海峰,秦茂玲,刘辉.一种基于特征点分割的三维模型检索方法[J].计算机技术与发展,2013,(01):71-74.
 XU Hai-feng,QIN Mao-ling,LIU Hui.3D Model Retrieval Method Based on Segmentation of Feature Point[J].,2013,(01):71-74.
点击复制

一种基于特征点分割的三维模型检索方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年01期
页码:
71-74
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
3D Model Retrieval Method Based on Segmentation of Feature Point
文章编号:
1673-629X(2013)01-0071-04
作者:
徐海峰12秦茂玲12刘辉12
[1]山东师范大学 信息科学与工程学院;[2]山东省分布式计算机软件新技术重点实验室
Author(s):
XU Hai-fengQIN Mao-lingLIU Hui
关键词:
三维模型检索特征点网格分割平坦度
Keywords:
3D model retrievalfeature pointmesh segmentationflatness
文献标志码:
A
摘要:
针对现有检索算法没有充分考虑模型局部信息的问题,文中提出一种改进的特征点分割方法进行特征生成树构造,并用于三维模型检索.首先提取模型特征点和核心部分,再计算每个三角片的平坦度,以特征面片为种子面片,平坦度差值作为增长因子,使用分水岭方法分割模型,可以得到模型各个部分的曲面集合,之后利用集合中各曲面间的拓扑关系创建特征树,最终去比较不同模型的特征树得到它们的匹配度,根据匹配度进行三维模型检索.文中方法在 Visual C++6.0环境下实现.实验结果表明,文中方法有效利用了模型的局部信息,在相同查全率下有较高的查准率,得到较好的结果
Abstract:
Aiming at 3D model didn't fully consider the model's partial information for the current retrieval algorithms,present an im-proved method of feature point segmentation to construct mesh map for 3D model retrieval. First feature points and the core part of the model are extracted,and then compute each triangular piece flatness,regarding feature point as seed patch,flatness difference value as a growth factor,using watershed segmentation model method,can get each part of the collection of surface for the model,and then use the set of the topological relationship between surface to create characteristic tree,and ultimately compare feature tree of different models to get their matching degree,according to which is retrieved. The algorithm is implemented in the developing environment of Visual C++ 6. 0. Experiments show that the method can effectively utilize the partial information of model,obtain more precision on the same recall and better result

相似文献/References:

[1]杨丹 孙向南 张小洪.一种分层渐进匹配的鲁棒估计算法[J].计算机技术与发展,2009,(06):36.
 YANG Dan,SUN Xiang-nan,ZHANG Xiao-hong.A Robust Estimating Algorithm Based on Layered Progressive Matching[J].,2009,(01):36.
[2]李得亮 秦茂玲.一种多特征动态集成的3D模型检索方法[J].计算机技术与发展,2008,(09):30.
 LI De-liang,QIN Mao-ling.3D Model Retrieval Based on Multi- Feature Dynamic Itergration[J].,2008,(01):30.
[3]张霞 葛芦生.图像中心点预标定方法研究与应用[J].计算机技术与发展,2007,(03):44.
 ZHANG Xia,GE Lu-sheng.Application and Research on Pre - Calibration of Image Center[J].,2007,(01):44.
[4]白茹意 周明全 邓擎琼.基于ICP和CPD的颅骨自动配准算法[J].计算机技术与发展,2011,(02):120.
 BAI Ru-yi,ZHOU Ming-quan,DENG Qing-qiong.Algorithm for Automated Skull Registration Based on ICP and CPD[J].,2011,(01):120.
[5]姚望 王军锋.基于主平面和两个次主平面的三维模型检索[J].计算机技术与发展,2012,(10):18.
 YAO Wang,WANG Jun-feng.3D Models Retrieval Using Principal Plane and Two Subordiantion Planes[J].,2012,(01):18.
[6]沈玲[],王年[]. 基于图的谱系数夹角的特征点匹配[J].计算机技术与发展,2015,25(12):68.
 SHEN Ling[],WANG Nian[]. Feature Points Matching Based on Angle between Spectral Coefficient of Images[J].,2015,25(01):68.
[7]李炀,翟社平. 改进的SIFT图像匹配算法[J].计算机技术与发展,2016,26(11):58.
 LI Yang,ZHAI She-ping. Improved SIFT Image Matching Algorithm[J].,2016,26(01):58.
[8]贾琪,王晓丹,周来恩,等. 一种改进的特征点方向分配算法[J].计算机技术与发展,2017,27(10):6.
 JIA Qi,WANG Xiao-dan,ZHOU Lai-en,et al. An Improved Algorithm for Assigning Orientations to Feature Points[J].,2017,27(01):6.
[9]陈思吉,王晓红*,葛义攀,等.图像边缘提取算法在第三次土地调查中的应用[J].计算机技术与发展,2020,30(10):161.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 029]
 CHEN Si-ji,WANG Xiao-hong*,GE Yi-pan,et al.Application of Image Edge Extraction Algorithm in Third National Land Survey[J].,2020,30(01):161.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 029]

更新日期/Last Update: 1900-01-01