[1]陆振杰,宋进.单幅数字图像多尺度空间下的场景深度估计[J].计算机技术与发展,2013,(01):51-53.
 LU Zhen-jie,SONG Jin.Scene Depth Estimation for Single Digital Image in Multi-scaled Space[J].,2013,(01):51-53.
点击复制

单幅数字图像多尺度空间下的场景深度估计()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年01期
页码:
51-53
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Scene Depth Estimation for Single Digital Image in Multi-scaled Space
文章编号:
1673-629X(2013)01-0051-03
作者:
陆振杰宋进
上海大学 机电工程与自动化学院
Author(s):
LU Zhen-jieSONG Jin
关键词:
双目立体视觉机器人导航单幅数字图像Markov随机场场景深度估计多尺度空间
Keywords:
binocular visionrobot navigationsingle digital imageMarkov random fieldscene depth estimationmulti-scaled space
文献标志码:
A
摘要:
双目立体视觉方法已广泛应用于移动机器人导航领域,通过该方法得到的视差图实现了对场景深度的有效估计,然而,双目立体视觉方法需要对图像对做匹配,计算量大,不适合动态场景的深度信息的获得.为了避免图像匹配的计算,以得到真实场景的深度估计,文中提出了一种基于 Markov 随机场模型对单幅数字图像特征建模来获得场景深度信息的方法.实验证明,通过单幅数字图像获得的场景深度可以有效地估计真实场景中摄像机与场景目标之间的距离,并且,随着尺度空间的变大,可以有效减小其所获得的深度值误差
Abstract:
Binocular stereo vision method has been widely used in mobile robot navigation area,the parallax diagram get by this method realizes the effective estimation for scene depth,however,binocular stereo vision method needs to do the image matching with large a-mounts of calculation,and is not suitable for dynamic scene depth information gain. In order to avoid the calculation of image matching, getting real scene depth estimation,present a method based on Markov random field model for singles digital image feature modeling to get scene depth information. The experiment proved the scene depth through the single digital image can effectively estimate the distance between camera and target scene in real scene,and with the variable scale space,can effectively reduce its received depth value error

相似文献/References:

[1]何海 汤春林 孙华燕.双目立体视觉在模型姿态监测中的应用研究[J].计算机技术与发展,2006,(11):238.
 HE Hai,TANG Chun-lin,SUN Hua-yan.Application of Binocular Stereo Vision in Model Carriage Measure[J].,2006,(01):238.
[2]王瑞 杨润泽 尹晓春.一种改进的立体像对密集点匹配算法[J].计算机技术与发展,2011,(09):70.
 WANG Rui,YANG Run-ze,YIN Xiao-chun.A Modified Image Dense Stereo Matching Algorithm[J].,2011,(01):70.
[3]张爱升,张艳彬.基于双目立体视觉的取走物检测技术研究[J].计算机技术与发展,2018,28(06):184.[doi:10.3969/ j. issn.1673-629X.2018.06.041]
 ZHANG Ai-sheng,ZHANG Yan-bin.Research on Removed Object Detection Technique Based on Binocular Stereo Vision[J].,2018,28(01):184.[doi:10.3969/ j. issn.1673-629X.2018.06.041]

更新日期/Last Update: 1900-01-01