[1]冯迪 于舒娟 张昀.一种改进激活函数的Hopfield盲检测算法[J].计算机技术与发展,2012,(12):207-210.
 FENG Di,YU Shu-juan,ZHANG Yun.Blind Detection Algorithm of Hopfield Neural Network With Improved Activation Function[J].,2012,(12):207-210.
点击复制

一种改进激活函数的Hopfield盲检测算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年12期
页码:
207-210
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Blind Detection Algorithm of Hopfield Neural Network With Improved Activation Function
文章编号:
1673-629X(2012)12-0207-04
作者:
冯迪 于舒娟 张昀
南京邮电大学电子科学与工程学院
Author(s):
FENG Di YU Shu-juan ZHANG Yun
College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications
关键词:
盲检测Hopfield神经网络抗干扰
Keywords:
blind detectionHopfield neural networkanti-jamming
分类号:
TP301.6
文献标志码:
A
摘要:
利用连续型Hopdfield神经网络实现无线通信信号的盲检测是一种较为有效的方法,但是其抗干扰性能较差,在低信噪比等复杂环境下算法的误码率过高。为了解决连续型Hopfield盲检测算法的不足,文中对传统的激活函数进行了改进,并给出了一种新的激活函数,新激活函数有效地降低了算法对噪声的敏感度,极大地提高了算法的抗干扰能力。仿真表明,在低信噪比、大数据量等复杂环境下,改进后的算法表现出了较强的抗干扰能力和稳健性,性能得到了显著的提高
Abstract:
It's more effective to use continuous Hopficid neural network to blindly detect wireless communication signal,but its anti jamming performance is poor and the algorithm bit error rate is a little high in complex environments, such as in low SNR environment. To conquer the above shortcoming ,a new kind of activation function is put forward in this thesis,which can effectively reduce the algorithm sensitivity to noise and greatly improve its anti-jamming capability. Simulation results demonstrate that the improved algorithm has better anti-jamming capability and robustness in complex environments, like low SNR or massive date environment. The improved algorithm shows strong anti-interference ability and robustness ,performance has been improved significantly

相似文献/References:

[1]马懿 张政保 冯帆 刘爱珍.基于高阶统计矩的特征提取优化算法[J].计算机技术与发展,2008,(12):123.
 MA Yi,ZHANG Zheng-bao,FENG Fan,et al.Optimized Algorithm for Feature Extraction Based on Higher Order Statistical Moments[J].,2008,(12):123.
[2]于帅珍.基于DWT可定位和抵御剪切的水印方案[J].计算机技术与发展,2008,(12):150.
 YU Shuai-zhen.Watermark Algorithm Based on DWT Against Cropping[J].,2008,(12):150.
[3]强俊 楚宁 周鸣争 汪军.基于NAS-RIF算法和神经网络的图像盲复原[J].计算机技术与发展,2007,(06):104.
 QIANG Jun,CHU Ning,ZHOU Ming-zheng,et al.Blind Image Restoration Algorithm Based on NAS-RIF Algorithm and Neural Network[J].,2007,(12):104.
[4]杨磊 于舒娟.基于精英策略的逆向蚁群优化盲检测算法[J].计算机技术与发展,2010,(12):90.
 YANG Lei,YU Shu-juan.Blind Detection Based on a Converse Ant Algorithm Using Elitist Strategy[J].,2010,(12):90.
[5]王京 于舒娟.模拟退火混沌粒子群算法的盲检测[J].计算机技术与发展,2011,(01):35.
 WANG Jing,YU Shu-juan.Blind Detection Based on Simulated Annealing Chaotic Particle Swarm Optimization[J].,2011,(12):35.
[6]赵娟 杨钒.一种用于图像内容认证的半脆弱数字水印[J].计算机技术与发展,2011,(01):151.
 ZHAO Juan,YANG Fan.A Semi-fragile Digital Watermark for Image Content Authentication[J].,2011,(12):151.
[7]黄子龙 张政保 文家福 刘会英.基于Krawtchouk不变矩的复制-粘贴篡改盲检测算法[J].计算机技术与发展,2012,(02):168.
 HUANG Zi-long,ZHANG Zheng-bao,WEN Jia-fu,et al.A Blind Forensic Algorithm for Detecting Copy-Paste Images Based on Krawtchouk Invariant Moments[J].,2012,(12):168.
[8]汪金伟 于舒娟 张昀.基于改进蚁群优化的盲均衡算法研究[J].计算机技术与发展,2012,(04):141.
 WANG Jin-wei,YU Shu-juan,ZHANG Yun.Research of Blind Equalization Algorithm Based on Improved Ant Colony Optimization[J].,2012,(12):141.
[9]蔡晴红,于舒娟,张昀.基于量子遗传优化的盲检测算法[J].计算机技术与发展,2013,(02):57.
 CAI Qing-hong,YU Shu-juan,ZHANG Yun.Blind Detection Algorithm Based on Quantum Genetic Optimization[J].,2013,(12):57.
[10]张昀,于舒娟,王京.基于自调节粒子群算法的盲检测[J].计算机技术与发展,2013,(11):59.
 ZHANG Yun,YU Shu-juan,WANG Jing.Blind Detection Based on Self-adaptive Particle Swarm Optimization[J].,2013,(12):59.
[11]宦如松,于舒娟,张昀.双Sigmoid Hopfield神经网络盲检测算法[J].计算机技术与发展,2014,24(04):100.
 HUAN Ru-song,YU Shu-juan,ZHANG Yun.Blind Detection Algorithm with Double Sigmoid Hopfield Neural Network[J].,2014,24(12):100.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(60772060)冯迪(1988-),男,江苏苏州人,硕士研究生,研究方向为新一代无线通信与通信信号处理;于舒娟,副教授,硕士研究生导师,研究方向为现代通信中的信号处理和智能信息处理技术
更新日期/Last Update: 1900-01-01