[1]周诚诚 张代远[].利用图像识别技术过滤海量可疑钓鱼网站[J].计算机技术与发展,2012,(11):246-249.
 ZHOU Cheng-cheng,ZHANG Dai-yuan.Using Image Recognition Technology to Filter Mass Suspicious Phishing Sites[J].,2012,(11):246-249.
点击复制

利用图像识别技术过滤海量可疑钓鱼网站()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年11期
页码:
246-249
栏目:
安全与防范
出版日期:
1900-01-01

文章信息/Info

Title:
Using Image Recognition Technology to Filter Mass Suspicious Phishing Sites
文章编号:
1673-629X(2012)11-0246-04
作者:
周诚诚12 张代远[123]
[1]南京邮电大学计算机学院[2]江苏省无线传感网高技术研究重点实验室[3]南京邮电大学计算机技术研究所
Author(s):
ZHOU Cheng-cheng ZHANG Dai-yuan
[1]College of Computer, Nanjing University of Posts and Telecommunications[2]College of Computer, Nanjing University of Posts and Telecommunications[3]Institute of Computer Technology, Nanjing University of Posts and Telecommunications
关键词:
图像识别钓鱼网站可疑钓鱼网站phishing反钓鱼技术LOGO检测
Keywords:
image recognition phishing sites dubious phishing sites anti-phishing technology LOGO detection
分类号:
TP309
文献标志码:
A
摘要:
网络钓鱼攻击(phishing,又称钓鱼攻击、网络钓鱼)作为一种主要基于互联网传播和实施的新兴攻击、诈骗的方式,正呈逐年上升之势,使广大用户和金融机构遭受到财产和经济损失。如何及时、有效地识别网络钓鱼相关的互联网风险,控制钓鱼攻击可能带来的影响,已经成为各金融机构当前亟待解决的问题。因此,各大银行、证券公司以及安全公司纷纷推出自己的反钓鱼监控服务,目前的反钓鱼技术普遍采取利用爬虫主动进行大范围互联网仿冒站点的搜素,爬取大量可疑钓鱼网站,并逐一对可疑钓鱼网站进行检测,判断其是否为钓鱼网站。面对海量可疑网站,如何高效快速地检测出可疑钓鱼网站又成为一个难题。文中介绍了一种基于图像识别技术的网站徽标(LOGO)检测的新思路,用于过滤海量的可疑钓鱼网站,加快钓鱼网站的检测效率
Abstract:
Phishing attacks (phishing, also known as phishing attacks), as an emerging attacking and frauding way primarily based on in ternet for dissemination and implementation,is burgeoning increasingly year by year, so that customers and financial institutions have suf fered property and economic losses. How to identify the intemet risks as to phishing and control the possible impact brought by phishing attacks timely and effectively ,has become the current problems to be solved by various financial institutions. Therefore,the major banks, security companies and the major safeco have successively launched their own anti-phishing monitoring services. Present anti-phishing technology generally take advantage of spiders to conduct a wide-range search of fake internet sites initiatively, to crawl a large number of dubious phishing sites and to detect them one by one to determine whether it is a phishing site. However,it has become another prob lem how to detect phishing sites fast and efficiently facing massive dubious websites. It introduces a new idea, website logo detection in the light of image recognition technology, filtering massive suspecious phishing sites and accelerating the efficiency of detecting phishing sites

相似文献/References:

[1]王明平 宋丽梅.基于计算机视觉的车架号采集系统[J].计算机技术与发展,2008,(04):239.
 WANG Ming-ping,SONG Li-mei.Vehicle Identify Number Acquisition System Based on Machine-Vision[J].,2008,(11):239.
[2]徐仕玲 赵敏 徐建波.野外早期火灾图像识别方法研究[J].计算机技术与发展,2008,(06):214.
 XU Shi-ling,ZHAO Min,XU Jian-bo.Research for Early Fire Image Recognition Technology in Outdoors[J].,2008,(11):214.
[3]张婷 吴元君 黄俊 吴建国.选票选举系统中选票图像的预处理方法研究[J].计算机技术与发展,2007,(04):225.
 ZHANG Ting,WU Yuan-jun,HUANG Jun,et al.Research of Image Pre- Processing in Vote Processing System[J].,2007,(11):225.
[4]吴忠 朱国龙 黄葛峰 吴建国.基于图像识别技术的手写数字识别方法[J].计算机技术与发展,2011,(12):48.
 WU Zhong,ZHU Guo-long,HUANG Ge-feng,et al.Handwritten Digit Recognition Based on Image Recognition System[J].,2011,(11):48.
[5]汪晨 张涛 林为民 邓松 时坚 李伟伟.图像识别综述及在电力信息安全中的应用研究[J].计算机技术与发展,2012,(04):161.
 WANG Chen,ZHANG Tao,LIN Wei-min,et al.Image Recognition Review and Application Research in Electric Power Information Security[J].,2012,(11):161.
[6]王珂雅 邱力军.一种新的脑部CT图像异常检测算法[J].计算机技术与发展,2012,(05):185.
 WANG Ke-ya,QIU Li-jun.A New Anomaly Detection Algorithm for Brain CT Image[J].,2012,(11):185.
[7]毕 杨,宋 飞,王 轩.一种航空维修工具智能管理系统的设计与实现[J].计算机技术与发展,2020,30(07):199.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 041]
 BI Yang,SONG Fei,WANG Xuan.Design and Implementation of an Intelligent Management System of Aviation Maintenance Tools[J].,2020,30(11):199.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 041]
[8]严一鸣[],郭星[]. 基于计算机视觉的交互式电子沙盘系统研究[J].计算机技术与发展,2017,27(06):195.
 YAN Yi-ming[],GUO Xing[]. Investigation on Interactive Electronic Sand Table System with Computer Vision[J].,2017,27(11):195.
[9]高友文,周本君,胡晓飞.基于数据增强的卷积神经网络图像识别研究[J].计算机技术与发展,2018,28(08):62.[doi:10.3969/ j. issn.1673-629X.2018.08.013]
 GAO You-wen,ZHOU Ben-jun,HU Xiao-fei.Research on Image Recognition of Convolution Neural Network Based on Data Enhancement[J].,2018,28(11):62.[doi:10.3969/ j. issn.1673-629X.2018.08.013]
[10]王山海,刘谦,马鑫鑫.基于图像识别的人工影响天气业务的研究[J].计算机技术与发展,2019,29(05):172.[doi:10. 3969 / j. issn. 1673-629X. 2019. 05. 036]
 WANG Shan-hai,LIU Qian,MA Xin-xin.Research on Weather Modification Based on Image Recognition[J].,2019,29(11):172.[doi:10. 3969 / j. issn. 1673-629X. 2019. 05. 036]

备注/Memo

备注/Memo:
江苏高校优势学科建设工程资助项目(yx002001)周诚诚(1987-),男,硕士研究生,研究方向为智能计算技术与应用;张代远,教授,硕士生导师,研究方向为智能计算理论、方法与应用,计算机体系结构,计算机在通信中的应用
更新日期/Last Update: 1900-01-01