[1]韦艳艳 李陶深.基于特征选择的集成分类器抗噪性能分析[J].计算机技术与发展,2012,(11):161-164.
 WEI Yan-yan,LI Tao-shen.Anti-noise Performance Analysis of Classifiers Ensembles Based on Feature Selection[J].,2012,(11):161-164.
点击复制

基于特征选择的集成分类器抗噪性能分析()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年11期
页码:
161-164
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Anti-noise Performance Analysis of Classifiers Ensembles Based on Feature Selection
文章编号:
1673-629X(2012)11-0161-04
作者:
韦艳艳1 李陶深2
[1]广西民族大学信息科学与工程学院广西混杂计算与集成电路设计分析重点实验室[2]广西大学计算机与电子信息学院
Author(s):
WEI Yan-yan LI Tao-shen
[1]Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis, School of Information Science & Engineering, Guangxi University for Nationalities[2]School of Computer & Electronic Information, Guangxi University
关键词:
集成分类器特征选择随机子空间旋转森林抗噪性能
Keywords:
classifiers ensembles feature selection random subspace rotation forest anti-noise performance
分类号:
TP181
文献标志码:
A
摘要:
特征选择有助于增强集成分类器成员间的随机差异性,从而提高泛化精度。研究了随机子空间法(RandomSub-space)和旋转森林法(RotationForest)两种基于特征选择的集成分类器构造算法,分析讨论了两算法特征选择的方式与随机差异程度之间的关系。通过对UCI数据集引入噪声,比较两者在噪声环境下的分类精度。实验结果表明:当噪声增加及特征关联度下降时,基本学习算法及噪声程度对集成效果均有影响,当噪声增强到一定程度后。集成效果和单分类器的性能趋于一致
Abstract:
Feature selection encourages random differentiation of the members of the ensembles to improve generation accuracy. In this pa per, random subspace and rotation forest, two algorithms based on feature selection for constructing classifiers ensembles were researched and their relationship between ways of selecting features and its affection on diversity was discussed. By introducing noise into UCI data sets,compared anti-noise performance with different noisy level of two algorithms. Experimental results indicate that both base learning algorithms and noisy level affect the accuracy of an ensemble while noise increases and feature correlation decreases. In situation with higher classification noise, both ensembles and single classifier exhibit quite similar performance

相似文献/References:

[1]刘利 何先平 袁文亮.股票趋势预测中Wrapper方法的研究与应用[J].计算机技术与发展,2010,(01):209.
 LIU Li,HE Xian-ping,YUAN Wen-liang.Research and Application of Wrapper Approach to Stock Trend Prediction[J].,2010,(11):209.
[2]黄炜 黄志华.一种基于遗传算法和SVM的特征选择[J].计算机技术与发展,2010,(06):21.
 HUANG Wei,HUANG Zhi-hua.Feature Selection Based on Genetic Algorithm and SVM[J].,2010,(11):21.
[3]张家柏 王小玲.基于聚类和二进制PSO的特征选择[J].计算机技术与发展,2010,(06):25.
 ZHANG Jia-bai,WANG Xiao-ling.A Novel Algorithm Based on K-Means Clustering and Binary Particle Swarm Optimization[J].,2010,(11):25.
[4]冯甲策 叶明 王惠文.基于Gram—Schmidt过程的支持向量机降维方法[J].计算机技术与发展,2009,(11):7.
 FENG Jia-ce,YE Ming,WANG Hui-wen.Dimension Reduction Method of Support Vector Machine Based on Gram- Schmidt Process[J].,2009,(11):7.
[5]林伟 柳荣其 徐熙.邮件过滤中一种改进的特征选择方法研究[J].计算机技术与发展,2009,(01):84.
 LIN Wei,LIU Rong-qi,XU Xi.Improvement of Feature Selection Algorithm in Spam Filtering[J].,2009,(11):84.
[6]刘毅 张月琳.基于Agent的邮件过滤与个性化分类系统设计[J].计算机技术与发展,2009,(02):66.
 LIU Yi,ZHANG Yue-lin.Design of a Mail Filter and Personalized Classification System Based on Agent[J].,2009,(11):66.
[7]陈素萍 谢丽聪.一种文本特征选择方法的研究[J].计算机技术与发展,2009,(02):112.
 CHEN Su-ping,XIE Li-cong.Research on Document Feature Selection[J].,2009,(11):112.
[8]段震 王倩倩 张燕平 张铃.覆盖算法下文本分类特征选择的研究[J].计算机技术与发展,2008,(11):29.
 DUAN Zhen,WANG Qian-qian,ZHANG Yan-ping,et al.Study on Feature Selection of Text Classification in Cross Cover Algorithm[J].,2008,(11):29.
[9]王希雷.基于Rough集理论的车牌汉字特征提取[J].计算机技术与发展,2007,(06):26.
 WANG Xi-lei.Car Plate Chinese Character Feature Extraction Based on Rough Set Theory[J].,2007,(11):26.
[10]董梅 胡学钢.基于多特征选择的中文文本分类[J].计算机技术与发展,2007,(07):117.
 DONG Mei,HU Xue-gang.Text Categorization Based on Multiple Features Selection[J].,2007,(11):117.

备注/Memo

备注/Memo:
广西自然科学基金项目(20lOGⅫsFAOl3127);广西教育项目(201106LXl31)韦艳艳(1974-),女,广西贵港人,讲师,硕士,CCF会员,研究方向为机器学习、数据挖掘;李陶深,教授,博士,CCF高级会员,研究方向为网络路由及分布式计算
更新日期/Last Update: 1900-01-01