[1]吕雪骥 李龙澍.FP—Growth算法MapReduce化研究[J].计算机技术与发展,2012,(11):123-126.
 LO Xue-ji,LI Long-shu.Research on Improved FP-Growth Algorithm with MapReduce[J].,2012,(11):123-126.
点击复制

FP—Growth算法MapReduce化研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年11期
页码:
123-126
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Research on Improved FP-Growth Algorithm with MapReduce
文章编号:
1673-629X(2012)11-0123-04
作者:
吕雪骥 李龙澍
安徽大学计算机科学与技术学院
Author(s):
LO Xue-ji LI Long-shu
College of Computer Science and Technology, Anhui University
关键词:
MapRedueeFP—GrowthMR—FP云计算分布式数据挖掘
Keywords:
MapReduce FP-Growth MR-FP cloud computing distributed data mining
分类号:
TP311
文献标志码:
A
摘要:
随着云计算概念的盛行,以及数据挖掘技术在分布式环境下的应用问题,该文献针对当前业界中流行的大规模并行计算模型MapReduce,将其引入数据挖掘领域关联规则算法的并行化改进中,提出基于FP-Growth算法并行化改进的MR—FP算法,为并行化关联规则挖掘提供节点可扩展、可容错、故障可恢复的运行保证。并通过案例分析得出系统在事务数呈数量级级别增长下仍可保持较高的性能。通过理论分析和案例实验表明,数据挖掘理论和方法在云计算环境下可以充分发挥能力,具有广阔的、有价值的研究空间
Abstract:
Nowadays the massively parallel computing model MapReduce is very popular in the current industry. It will introduce it into the improvement of association rules of data mining algorithms in parallelization, propose the improved MR-FP algorithm based on par alleled FP-Growth algorithm, and provide the parallelization association rules mining with node scalable, fault tolerance and operation. Draw a conclusion that the system can still maintain pretty high performance when the transactions are under the orders of magnitude level. The theoretical analysis and the case studies demonstrate that data mining theory and methods can show their full abilities based on the cloud computing. It deserves more valuable research

备注/Memo

备注/Memo:
安徽省自然科学基金(090412054)吕雪骥(1987-),男,硕士研究生,研究方向为数据挖掘技术;李龙澍,教授,硕士,博士生导师,研究方向为智能软件、机器人足球、粗糙集理论、数据挖掘
更新日期/Last Update: 1900-01-01