[1]马玉慧 谭凯 尚晓晶.基于语义句模的语义理解方法研究[J].计算机技术与发展,2012,(10):117-120.
 MA Yu-hui,TAN Kai,SHANG Xiao-jing.Research on Method of Semantic Comprehension Based on Semantic Sentence Template[J].,2012,(10):117-120.
点击复制

基于语义句模的语义理解方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年10期
页码:
117-120
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Research on Method of Semantic Comprehension Based on Semantic Sentence Template
文章编号:
1673-629X(2012)10-0117-04
作者:
马玉慧 谭凯 尚晓晶
渤海大学教育技术研究所
Author(s):
MA Yu-hui TAN Kai SHANG Xiao-jing
Institute of Technological Education,Bohai University
关键词:
语义理解句模知识表示自动求解
Keywords:
semantic comprehension sentence template knowledge representation automated solving
分类号:
TP391
文献标志码:
A
摘要:
针对目前情境信息丰富问题语义理解的困难,提出了一种基于语义句模的语义理解方法。该方法借鉴汉语言学中句模的研究成果,以及问题的分类,构建语义句模,将语义信息蕴含在句模中,利用文本中能够穷举的信息,为千变万化的情境信息赋予相应的语义。实验构建了基于自然语言处理工具Gate的语义句模jape规则库,以收集的102道四则运算应用题为例进行语义理解,实验结果为完全理解的题目为82.4%,部分理解为17.6%,完全不理解的0%。得出的实验结论是,该方法能够较好地实现情境信息丰富问题的语义理解
Abstract:
According to the difficulty of semantic comprehension for the problems with rich contextual infomlation, present a method of semantic comprehension based on semantic sentence template. This method is to construct the semantic senteace templates based on the research of sentence template in the field of Chinese linguistic and the classifications of problems. The semantic is contained in the semantic sentence templates. The semantics of the contextual information can be recognized by the exhaustive information. Experiment constructs jape rule library of semantic sentence template based on natural language processing tool Gate, 102 word problems are collected as examples for semantic comprehension, and the results demonstrate that the full comprehension topic accounts for 82.4% ,part comprehension 17.6% ,without not comprehension. It is concluded that this method is effective for semantic comprehension of the problems with rich contextual information

相似文献/References:

[1]闻彬,饶彬,赵君喆,等. 融合直推式学习和语义理解的词语倾向性识别[J].计算机技术与发展,2016,26(01):74.
 WEN Bin,RAO Bin,ZHAO Jun-zhe,et al. Identifying of Word Sentiment Orientation of Transductive Learning and Semantic Comprehension[J].,2016,26(10):74.

备注/Memo

备注/Memo:
辽宁省教育科研计划项目(w2010042)马玉慧(1974-),女,博士,研究方向为人工智能及其教育应用
更新日期/Last Update: 1900-01-01