[1]包小兵 翟素兰 程兰兰.基于信息熵加权的局部离群点检测算法[J].计算机技术与发展,2012,(09):59-61.
 BAO Xiao-bing,ZHAI Su-lan,CHENG Lan-lan.SLOM Outlier Mining Algorithm Based on Entropy Weighted[J].,2012,(09):59-61.
点击复制

基于信息熵加权的局部离群点检测算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年09期
页码:
59-61
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
SLOM Outlier Mining Algorithm Based on Entropy Weighted
文章编号:
1673-629X(2012)09-0059-03
作者:
包小兵 翟素兰 程兰兰
安徽大学数学科学学院
Author(s):
BAO Xiao-bing ZHAI Su-lan CHENG Lan-lan
Institute of Mathematical Sciences, Anhui University
关键词:
局部离群测度信息熵加权距离离群点检测
Keywords:
SLOM information entropy weighted distance outlier detection
分类号:
TP391.4
文献标志码:
A
摘要:
离群点检测是数据挖掘领域的重要研究方向之一,可以从大量数据中发现少量与多数数据有明显区别的数据对象。在诸如网络入侵、无线传感器网络异常事件等检测应用中,离群点检测是一项具有很高应用价值的技术。为了提高离群点检测准确度,文中在局部离群测度(SLOM)算法的基础上,作了一些改进,提出了一种基于密度的局部离群点检测算法ESLOM。引入信息熵确定数据对象的离群属性,并对对象距离采用加权距离,以提高离群点检测准确度。理论分析和实验表明该算法是可行有效的
Abstract:
Outlier detection is one of the important research field in data mining,which is to find exceptional objects that deviate from the most rest of the data set. And is one of the valuable techniques in many applications, such as network intrusion detection, event detection in wireless sensor network ( WSN ), and so on. In order to improve the accuracy of detection outliers, made some improvements based on the local outlier measure ( SLOM } algorithm, a density-based local outlier detecting algorithm { ESLOM } is proposed, which educes outlier attributes of each data object by information entropy. Introducing the information entropy determine stray attributes of the data object. And use the weighted distance on the objects distance to improve the outliers detecting accuracy. Theoretical analysis and experimental results show this algorithm is feasible and effective

相似文献/References:

[1]陈锦禾 沈洁.基于信息熵的主动学习半监督分类研究[J].计算机技术与发展,2010,(02):110.
 CHEN Jin-he,SHEN Jie.Active Learning Based on Information Entropy for Semi- supervised Classification[J].,2010,(09):110.
[2]刘星毅.一种新的决策树分裂属性选择方法[J].计算机技术与发展,2008,(05):70.
 LIU Xing-yi.A New Splitting Criterion of Decision Trees[J].,2008,(09):70.
[3]纪滨.信息熵在粗糙集中衍生的几个概念[J].计算机技术与发展,2008,(06):73.
 JI Bin.Several Concepts from Information Entropy in Rough Sets[J].,2008,(09):73.
[4]孙岳岳 刘希玉.一种变增长率的多种群竞争协同进化[J].计算机技术与发展,2011,(05):64.
 SUN Yue-yue,LIU Xi-yu.Population Density of Coevolution Based on Changes[J].,2011,(09):64.
[5]李晓峰,杨春山,丁树春[].基于信息熵的城市隧道实时交通事件检测聚类[J].计算机技术与发展,2013,(10):212.
 LI Xiao-feng[],YANG Chun-shan[],DING Shu-chun[].Entropy-based City Tunnel Real-time Traffic Incident Detection Clustering[J].,2013,(09):212.
[6]卢传耀,徐敏. 基于加权的冗余相似本体实例发现的研究[J].计算机技术与发展,2014,24(09):11.
 LU Chuan-yao,XU Min. Research on Ontology Instances Found Redundancy Based on Entropy Weighted[J].,2014,24(09):11.
[7]王小林,陆骆勇,邰伟鹏. 基于信息熵的新的词语相似度算法研究[J].计算机技术与发展,2015,25(09):119.
 WANG Xiao-lin,LU Luo-yong,TAI Wei-peng. Research of a New Algorithm of Words Similarity Based on Information Entropy[J].,2015,25(09):119.
[8]侯立铎,叶洁. C4.5算法在工程质量决策支持系统中的应用研究[J].计算机技术与发展,2016,26(02):132.
 HOU Li-duo,YE Jie. Applied Research of C4 . 5 Algorithm in Engineering Quality Decision Support System[J].,2016,26(09):132.
[9]朱佳佳,陈佳. 于熵和SVM多分类器的异常流量检测方法[J].计算机技术与发展,2016,26(03):31.
 ZHU Jia-jia,CHEN Jia. An Anomaly Detection Method Based on Entropy and SVM Multi-class Classifier[J].,2016,26(09):31.
[10]张素智,杨 芮,陈小妮.基于独立区域划分和压缩感知的数据融合方法[J].计算机技术与发展,2019,29(08):63.[doi:10. 3969 / j. issn. 1673-629X. 2019. 08. 012]
 ZHANG Su-zhi,YANG Rui,CHEN Xiao-ni.Data Fusion Method Based on Independent Region Division and Compressed Sensing[J].,2019,29(09):63.[doi:10. 3969 / j. issn. 1673-629X. 2019. 08. 012]

备注/Memo

备注/Memo:
安徽省高校优秀青年人才基金(2009SQRZ019ZD)包小兵(1981-),男,安徽庐江人,硕士研究生,研究方向为数据挖掘;翟素兰,副教授,博士,硕士生导师,研究方向为模式识别、视频分析、数据挖掘
更新日期/Last Update: 1900-01-01