[1]张月琴 刘翔 孙先洋.一种改进的BP神经网络算法与应用[J].计算机技术与发展,2012,(08):163-166.
 ZHANG Yue-qin,LIU Xiang,SUN Xian-yang.An Imporved Algorithm of BP Neural Network and Its Application[J].,2012,(08):163-166.
点击复制

一种改进的BP神经网络算法与应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年08期
页码:
163-166
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
An Imporved Algorithm of BP Neural Network and Its Application
文章编号:
1673-629X(2012)08-0163-04
作者:
张月琴 刘翔 孙先洋
太原理工大学计算机科学与技术学院
Author(s):
ZHANG Yue-qin LIU Xiang SUN Xian-yang
School of Computer Science and Technology, Taiyuan University of Technology
关键词:
BP算法蚁群优化算法神经网络
Keywords:
BP algorithmant colony optimizationneural network
分类号:
TP301.6
文献标志码:
A
摘要:
针对传统BP算法存在的收敛速度过慢、易陷入局部极小、缺乏统一的理论指导网络结构设计的缺点,分析了一般的改进算法在神经网络优化过程中存在的问题,从蚁群算法和BP算法融合的角度上,并引入了放大因子,提出一种综合改进的BP算法。该算法引入放大因子改善BP算法易陷入局部极小的情况,结合蚁群算法用于指导网络结构设计,并极大地改善了收敛速度过慢的问题。最后,将改进的BP算法与传统BP算法进行应用于煤矿瓦斯预测。通过对实验结果的分析,从时间和正确率上都表明改进的BP算法要优于传统的BP算法
Abstract:
As for shoaonmings of standard BP algorithm such as slow convergence,easily trapped into local minima and no unified theory to guide how to design neural network,anelyzed the problems of original improved BP algorithm,from the perspective of combing ant coimly optimization with BP algorithm introduced a new enlarge factor,thus proposed a new impwved BP algorithm. The algorithm is in- troduced into the amplification factor to improve the BP algorithm is easy to fall into local minima,combined with the ant colony algorithm is used to guide the network stngture design,greatly improve the convergence speed. On these basis,the proposed BP algorithm and classical BP algorithm were applied to the prediction of coal mine gas concentration. By analysing the experiment, the results show that the improved BP algorithm indeed is more efficient than classical BP algorithm from time and accuracy

相似文献/References:

[1]李志俊 程家兴 金奎 饶玉佳.基于样本期望训练数的BP神经网络改进研究[J].计算机技术与发展,2009,(05):103.
 LI Zhi-jun,CHENG Jia-xing,JIN Kui,et al.BP Algorithm Improvement Based on Sample Expected Training Number[J].,2009,(08):103.
[2]姜学鹏 洪贝 曹耀钦.基于证据理论决策的蚁群优化算法[J].计算机技术与发展,2009,(08):120.
 JIANG Xue-peng,HONG Bei,CAO Yao-qin.Ant Colony Optimal Algorithms Based on Evidence Theory[J].,2009,(08):120.
[3]薛俊 陈行 陶军.一种基于神经网络的入侵检测技术[J].计算机技术与发展,2009,(08):148.
 XUE Jun,CHEN Hang,TAO Jun.Technology of Intrusion Detection Based on Neural Network[J].,2009,(08):148.
[4]蔡秋茹 罗烨 柳益君 叶飞跃.企业资信的BP神经网络评估模型研究[J].计算机技术与发展,2009,(10):117.
 CAI Qiu-ru,LUO Ye,LIU Yi-jun,et al.Research on BP Neural Network Model for Corporation Credit Rating[J].,2009,(08):117.
[5]戴芬 刘希玉 王晓敏.蚁群神经网络在中小企业信用评价中的应用[J].计算机技术与发展,2009,(10):218.
 DAI Fen,LIU Xi-yu,WANG Xiao-min.Application of Ant Colony Neural Network to Credit Evaluation of Small and Middle Enterprises[J].,2009,(08):218.
[6]王晓敏 刘希玉 戴芬.BP神经网络预测算法的改进及应用[J].计算机技术与发展,2009,(11):64.
 WANG Xiao-min,LIU Xi-yu,DAI Fen.Improvement and Application of BP Neural Network Forecasting Algorithm[J].,2009,(08):64.
[7]丁晓贵 刘桂江.基于PIDNN的污水处理系统参数辨识研究[J].计算机技术与发展,2008,(05):200.
 DING Xiao-gui,LIU Gui-jiang.Study on Identification Parameters of Wastewater Treatment System Based on PIDNN[J].,2008,(08):200.
[8]张充 史青宣 苗秀芬 杨芳 田学东.基于BP神经网络的手写体数字识别[J].计算机技术与发展,2008,(06):128.
 ZHANG Chong,SHI Qing-xuan,MIAO Xiu-fen,et al.Handwritten Numeral Recognition Based on BP Neural Network[J].,2008,(08):128.
[9]郭彦伟 王洪国 王鑫 于惠.一种基于并行策略的BP改进算法[J].计算机技术与发展,2008,(10):110.
 GUO Yan-wei,WANG Hong-guo,WANG Xin,et al.An Improved BP Algorithm Based on Parallel[J].,2008,(08):110.
[10]马恋 何锫.基于神经网络的数据压缩研究[J].计算机技术与发展,2007,(02):12.
 MA Lian,HE Pei.Research on NN- Based Data Compression[J].,2007,(08):12.

备注/Memo

备注/Memo:
山西省自然科学基金项目(2008011028-1);山西省科技攻关项目(20100322003)张月琴(1963-),女,教授,硕士生导师,研究方向为智能信息系统、数据挖掘等;刘翔(1985-),男,硕士研究生,主要研究方向为数据挖掘、人工神经网络
更新日期/Last Update: 1900-01-01