[1]陈延利 施永豪.运动目标检测与跟踪的DSP实现[J].计算机技术与发展,2012,(08):82-84.
 CHEN Yan-li,SHI Yong-hao.DSP Realization of Detection and Tracking for Moving Objects[J].,2012,(08):82-84.
点击复制

运动目标检测与跟踪的DSP实现()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年08期
页码:
82-84
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
DSP Realization of Detection and Tracking for Moving Objects
文章编号:
1673-629X(2012)08-0082-03
作者:
陈延利1 施永豪2
[1]西藏大学工学院电子信息工程系[2]西南交通大学信息科学与技术学院通信与信息系统系
Author(s):
CHEN Yan-li SHI Yong-hao
[1]Department of Electronic Information, School of Engineering,Tibet University[2]Department of Communication and Information System,School of Information Science & Technology, Southwest Jiaotong University
关键词:
中值滤波形心跟踪粒子滤波运动目标检测与跟踪
Keywords:
median filtering centroid tracking particle filtering moving objects detection and tracking
分类号:
TP391.9
文献标志码:
A
摘要:
研究了运动目标检测与跟踪的DSP(Digital Signal Processor)实现算法,以形心跟踪算法为整个处理系统的核心。采用目标形心跟踪算法,通过目标分割阶段的目标标记,如目标面积、周长、形心位置等信息的提取建立目标跟踪波门,实现目标的连续跟踪,并将此算法移植到sEED—VPM642硬件平台,实验结果表明能够达到预定目标。此外,为了克服形心算法的准确性和实时性缺陷,采用粒子滤波对算法进行必要的扩展,从MATLAB的仿真结果看,除个别采样点存在误差较大的情况,真实值曲线与粒子滤波跟踪曲线拟合较好
Abstract:
Study the DSP (Digital Signal Processor) algorithm for detecting and tracking moving target, with the centroid tracking algorithm as the core of the whole processing system. By marking the target segmentation stages,such as area,perimeter,centroid position information extraction,the target centroid tracking algorithm can construct the target tracking gate to achieve the goal of continuous tracking. Transplanting this target centroid tracking algorithm into the SEED-VPM642 hardware platform,the experimental results indicate that the predetermined target can be achieved. In addition, necessary expansion of the particle filter algorithm can be used to overcome the centroid algorithm accuracy and real-time defect. The MATLAB simulation results show that the true value curve fits for the particle filter tracking curve to much extent,except that a few sampling points differ much from the others

相似文献/References:

[1]侯伟 卢炎麟 郑河荣 潘翔 陈永清.固定背景下的视频分割及在交通视频流的应用[J].计算机技术与发展,2008,(09):191.
 HOU Wei,LU Yan-lin,ZHENG He-rong,et al.Segmentation in Fixed Background Video and Application to Traffic Flow[J].,2008,(08):191.
[2]段汉根 汪继文.一种基于偏导数的滤波算法[J].计算机技术与发展,2007,(06):64.
 DUAN Han-gen,WANG Ji-wen.A New Filtering Algorithm Based on Partial Derivatives[J].,2007,(08):64.
[3]王峰 王浩 王诗兵 王秀友.一种新型的混合滤波器的设计与实现[J].计算机技术与发展,2007,(06):107.
 WANG Feng,WANG Hao,WANG Shi-bing,et al.Design and Realization of a New Mix Filter[J].,2007,(08):107.
[4]陆钢锋 袁保社.一种基于改进的非对称裁剪中值滤波算法[J].计算机技术与发展,2012,(08):5.
 LU Gang-feng,YUAN Bao-she.A Median Filter Algorithm Based on Improved Unsymmetrical Trimmed[J].,2012,(08):5.
[5]沈德海,张龙昌,鄂旭.基于统计阈值检测的中值均值滤波算法[J].计算机技术与发展,2013,(05):34.
 SHEN De-hai,ZHANG Long-chang,E Xu.A Median and Mean Filter Algorithm Based on Statistical Threshold Detection[J].,2013,(08):34.
[6]沈德海,侯建,鄂旭,等.一种噪声密度估计的梯度检测滤波算法[J].计算机技术与发展,2013,(06):82.
 SHEN De-hai,HOU Jian,E Xu,et al.A Gradient Detection Filter Algorithm of Noise Density Estimation[J].,2013,(08):82.
[7]程姝,周志强,季静. 含特殊噪声模糊图像复原技术的研究及应用[J].计算机技术与发展,2014,24(12):249.
 CHENG Shu,ZHOU Zhi-qiang,JI Jing. Research and Application of Special Noisy and Fuzzy Image Restoration Technology[J].,2014,24(08):249.
[8]张黔,杨润玲,刘警锋,等. 带钢表面缺陷图片的去噪和分割方法研究[J].计算机技术与发展,2015,25(04):26.
 ZHANG Qian,YANG Run-ling,LIU Jing-feng,et al. Research on Denoising and Segmentation Method of Steel Strip Surface Defect Images[J].,2015,25(08):26.
[9]杨琴,姜自波,刘承超.基于频域快速解卷的血管提取算法[J].计算机技术与发展,2016,26(03):113.
 YANG Qin,JIANG Zi-bo,LIU Cheng-chao. Vessel Extraction Algorithm Based on Fast Frequency-domain Deconvolution[J].,2016,26(08):113.

备注/Memo

备注/Memo:
国家自然科学基金(61163013);西藏自治区2010年第二批重点科研项目(20100217)陈延利(1981-),女,河南汝州人,讲师,硕士,CCF会员,主要研究领域为移动通信系统安全、信号处理
更新日期/Last Update: 1900-01-01