[1]盛朝强 王君.煤矿井下人员签到系统人脸识别算法研究[J].计算机技术与发展,2012,(07):171-173.
 SHENG Chao-qiang,WANG Jun.Face Recognition Algorithms of Sign-in System for Underground Coalmine[J].,2012,(07):171-173.
点击复制

煤矿井下人员签到系统人脸识别算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年07期
页码:
171-173
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Face Recognition Algorithms of Sign-in System for Underground Coalmine
文章编号:
1673-629X(2012)07-0171-03
作者:
盛朝强 王君
重庆大学自动化学院
Author(s):
SHENG Chao-qiang WANG Jun
College of Automation, Chongqing University
关键词:
煤矿井下人员人脸识别KL变换TAN分类器
Keywords:
coal miners face recognition KL transform TAN classifier
分类号:
TP305
文献标志码:
A
摘要:
鉴于煤矿安全事故时有发生,利用签到系统准确掌握井下人员出入情况,对煤矿安全生产与救援有着重要的意义。将基于人脸识别的签到系统用于煤矿,遇到光线昏暗、人脸易附着黑色粉尘等因素影响,传统的基于PCA(PrincipalComponentAnalysis)的人脸识别算法检测率低。为了解决该问题,论文提出了一种基于KL变换(Karhunen—LoeveTrans-form)和TAN分类器(Tree—AugmentedNaiveBayesiannetwork)相结合的人脸识别方法。该算法通过KL变换使特征点更突出,通过TAN分类器使匹配结果更准确。仿真研究结果表明:该算法既减小了计算复杂度,又提高了人脸识别率
Abstract:
The coalmine accident happens sometimes. In order to be convenient to rescue,it's significance to know the accurate number of the miners in coalmine or outside. When the traditional face recognition system was used in coal mine, the system meets new problems, such as black, hazy face etc. The detection rate based on PCA (Principal Component Analysis) of traditional face recognition algorithm is low. Aiming at this issue,put forward a face recognition algorithm based on the combination of KL transform (Karhunen-Loeve Transform) and TAN classifier (Tree-Augmented Naive Bayesian network). The algorithm through the KL transform makes feature point more outstanding, through the TAN classifier makes matching result more accurate. Simulation shows that this algorithm not only reduces the computational complexity, but also improves the human face recognition rate

相似文献/References:

[1]徐钊,吴光敏,覃世欢.基于AccelDSP的LBP算法在人脸识别中的应用[J].计算机技术与发展,2014,24(01):51.
 XU Zhao,WU Guang-min,QIN Shi-huan.Application of LBP Algorithm Based on AccelDSP in Face Recognition[J].,2014,24(07):51.
[2]时书剑 马燕.基于Gabor滤波和KPCA的人脸识别方法[J].计算机技术与发展,2010,(04):51.
 SHI Shu-jian,MA Yan.Face Recognition Based on Gabor Filters and Kernel Principal Component Analysis[J].,2010,(07):51.
[3]袁健 姚明海.基于简化局部二元法的人脸特征提取[J].计算机技术与发展,2009,(06):84.
 YUAN Jian,YAO Ming-hai.Facial Feature Extraction Based on Simplified Local Binary Patterns[J].,2009,(07):84.
[4]李伟.人脸识别算法在智能手机上的实现[J].计算机技术与发展,2008,(01):161.
 LI Wei.Implementation of Face Identification in Intelligent Mobile Telephone[J].,2008,(07):161.
[5]黄国宏 刘刚.一种新的基于Fisher准则的线性特征提取方法[J].计算机技术与发展,2008,(05):227.
 HUANG Guo-hong,LIU Gang.A New Linear Feature Extraction Method Based on Fisher Criterion[J].,2008,(07):227.
[6]孙晓玲 侯德文 储凡静.人脸识别中的眼睛定位方法[J].计算机技术与发展,2008,(10):46.
 SUN Xiao-ling,HOU De-wen,CHU Fan-jing.Eye Location in Face Recogniton[J].,2008,(07):46.
[7]王静 谭同德.基于梯度和模板二次匹配的人眼定位[J].计算机技术与发展,2007,(10):144.
 WANG Jing,TAN Tong-de.A Method to Eyes Location Based on Step- Direction and Templet - Matching[J].,2007,(07):144.
[8]高宏娟 潘晨.基于非负矩阵分解的人脸识别算法的改进[J].计算机技术与发展,2007,(11):63.
 GAO Hong-juan,PAN Chen.Improved Face Recognition Algorithm Based on Non- Negative Matrix Factorization[J].,2007,(07):63.
[9]徐勇 张海 周森鑫 王辉.基于统计学习理论的人脸识别方法研究[J].计算机技术与发展,2007,(11):118.
 XU Yong,ZHANG Hai,ZHOU Sen-xin,et al.Research on Face Recognition Based on Statistical Learning Theory[J].,2007,(07):118.
[10]马驰 阮秋琦.基于离散微粒群优化算法的SVM参数选择[J].计算机技术与发展,2007,(12):20.
 MA Chi,RUAN Qiu-qi.Parameter Selection for SVM Based on Discrete PSO[J].,2007,(07):20.

备注/Memo

备注/Memo:
“211工程”三期创新人才培养计划建设项目(S-09108)盛朝强(1963-),男,副教授,研究方向为信息处理机制、骑车控制及试验系统;王君(1987-),男,硕士,研究方向为智能信息处理和智能控制、机器视觉
更新日期/Last Update: 1900-01-01