[1]赵侃 漆德宁.基于UKF滤波的FDOA和TDOA联合定位跟踪算法[J].计算机技术与发展,2012,(05):127-129.
 ZHAO Kan,QI De-ning.A Tracking TDOA/FDOA Joint Location Algorithm Based on UKF[J].,2012,(05):127-129.
点击复制

基于UKF滤波的FDOA和TDOA联合定位跟踪算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年05期
页码:
127-129
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
A Tracking TDOA/FDOA Joint Location Algorithm Based on UKF
文章编号:
1673-629X(2012)05-0127-03
作者:
赵侃 漆德宁
解放军陆军军官学院
Author(s):
ZHAO Kan QI De-ning
Army Officer Academy
关键词:
目标跟踪时差频差联合定位无味卡尔曼滤波
Keywords:
target tracking TDOA/FDOA joint location UKF
分类号:
TN96
文献标志码:
A
摘要:
三星座时差定位是一个非线性估计问题,当辐射源高程所带来的误差无法忽略时,仍然使用基于WGS-84地球模型的时差定位算法对目标进行跟踪定位的方法具有一定的局限性。当数据残缺时,传统的定位算法无法精确估计高程目标位置。为了提高传统的基于三星的时差定位系统的跟踪性能,提出了基于UKF滤波的TDOA/FDOA联合定位算法对单个目标的位置和速度进行估计。仿真结果证明了TDOA/FDOA联合定位算法拥有更好的跟踪性能,以及该算法的稳定性和有效性
Abstract:
To get the position of target by TDOA in three satellites constellation TDOA location system is a nonlinear location problem. The tri-station time difference of arrival (TDOA} location algorithm based on WGS-84 ellipsoid model has some limitations when the altitude of target can not be ignored. A conventional algorithm, target localization through TDOA measurements cannot estimate target po- sition when the number of TDOA measurements are not enough for localization. In order to enhance the performance of conventional satellite target localization based on three satellites systems,propose a target positioning algorithm using TDOA (Time Difference of Arrival ) and FDOA ( Frequency Difference of Arrival ) joint measurements based on unscented Kalman filter for a single target to compute the position and velocity estimates. The simulation results prove the fact that the joint TDOA/FDOA has better location performance, and illustrates the reliability and effectiveness of this new method

相似文献/References:

[1]刘翔 吴谨 祝愿博 康晓晶.基于视频序列的目标检测与跟踪技术研究[J].计算机技术与发展,2009,(11):179.
 LIU Xiang,WU Jin,ZHU Yuan-bo,et al.A Study of Object Detecting and Tracking Based on Video Sequences[J].,2009,(05):179.
[2]雷云 王夏黎 孙华.基于视频的交通目标跟踪方法研究[J].计算机技术与发展,2010,(07):44.
 LEI Yun,WANG Xia-li,SUN Hua.The Research about Transport Target Tracking Based on Video[J].,2010,(05):44.
[3]谢之宇 蒋晓瑜 汪熙 裴闯.基于多线索融合的目标跟踪算法研究[J].计算机技术与发展,2011,(03):125.
 XIE Zhi-yu,JIANG Xiao-yu,WANG Xi,et al.A Target Tracking Algorithm Research Based on Multi-Cue Fusion[J].,2011,(05):125.
[4]尤天来 周海徽[].红外目标跟踪技术研究[J].计算机技术与发展,2011,(10):140.
 YOU Tian-lai,ZHOU Hai-hui.Research of Infrared Target Tracking Technology[J].,2011,(05):140.
[5]姚放吾 许辰铭.基于目标质心的Meanshift跟踪算法[J].计算机技术与发展,2012,(06):104.
 YAO Fang-wu,XU Chen-ming.A Meanshift Tracking Algorithm Based on Centroid[J].,2012,(05):104.
[6]张璐,张国良,张维平,等.改进IMM算法在机器人目标跟踪中的应用[J].计算机技术与发展,2013,(02):149.
 ZHANG Lu,ZHANG Guo-liang,ZHANG Wei-ping,et al.Application of Improved IMM Algorithm in Robot Target Tracking[J].,2013,(05):149.
[7]吴佳家,高珏,李敏,等.基于均值漂移和卡尔曼滤波的跟踪算法研究[J].计算机技术与发展,2014,24(01):5.
 WU Jia-jia[,GAO Jue[],LI Min[],et al.Research on Target Tracking Algorithm Based on Mean Shift and Kalman Filter[J].,2014,24(05):5.
[8]郝杰,任静. 高超声速飞行器交互式多模型跟踪算法仿真[J].计算机技术与发展,2015,25(02):204.
 HAO Jie,REN Jing. Tracking Algorithm Simulation of Interactive Multiple Model for Hypersonic Flight Vehicle[J].,2015,25(05):204.
[9]高翔,朱婷婷,刘洋. 多摄像头系统的目标检测与跟踪方法研究[J].计算机技术与发展,2015,25(07):221.
 GAO Xiang,ZHU Ting-ting,LIU Yang. Research of Target Detection and Tracking Method for Multi-camera System[J].,2015,25(05):221.
[10]刘少林,朱文球,孙文静,等.基于联合直方图的自适应粒子滤波跟踪算法[J].计算机技术与发展,2018,28(06):106.[doi:10.3969/ j. issn.1673-629X.2018.06.024]
 LIU Shao-lin,ZHU Wen-qiu,SUN Wen-jing,et al.An Adaptive Particle Filtering and Tracking Algorithm Based on Joint Histogram[J].,2018,28(05):106.[doi:10.3969/ j. issn.1673-629X.2018.06.024]

备注/Memo

备注/Memo:
安徽省自然科学基金(090412043);中国博士后科学基金(200801493,20080430223)赵侃(1987-),男,硕士研究生,研究方向为目标定位与跟踪、空间信息处理
更新日期/Last Update: 1900-01-01