[1]侯艳丽.融合多特征的纹理图像分割算法[J].计算机技术与发展,2012,(05):120-122.
 HOU Yan-li.Texture Image Segmentation Algorithm of Space Feature and Frequency Feature Fusion[J].,2012,(05):120-122.
点击复制

融合多特征的纹理图像分割算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年05期
页码:
120-122
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Texture Image Segmentation Algorithm of Space Feature and Frequency Feature Fusion
文章编号:
1673-629X(2012)05-0120-03
作者:
侯艳丽
商丘师范学院计算机与信息技术学院
Author(s):
HOU Yan-li
Department of Computer and Information Technology, Shangqiu Teachers College
关键词:
图像纹理分割小波框架k均值聚类支持向量数据域描述
Keywords:
image texture segmentation wavelet frame k-means clustering support vector domain description
分类号:
TP391.41
文献标志码:
A
摘要:
针对传统的只用纹理的一种特征进行纹图像分割时的分割错误率较高的问题,提出了一种融合多特征的纹理图像分割算法。该方法综合考虑纹理的空间特征和频域特征,其中,空间特征提取在支持向量数据域描述的基础上进行;频域特征提取则利用改进的小波框架反映不同尺度间的特征;在此基础上,利用k均值算法对融合后的纹理特征进行聚类从而完成纹理图像的分割。实验结果表明与传统的只利用纹理的一种特征进行分割相比,该方法的错误率明显降低,同时在边缘准确性和区域一致性上都得到了明显的改善
Abstract:
Aim to decrease the segmentation error, a texture image segmentation algorithm based on space feature and frequency feature fusion is studied in this paper, in which both space feature and frequency feature are considered simultaneously. Firstly, space feature of a texture image is extracted based on support vector domain description. Secondly, frequency feature is extracted in different scale using modified discrete wavelet frame transform. And then, the k-means clustering algorithm is applied to the texture segmentation. At last, sim- ulations are performed on the presented algorithm, and the simulation result shows that the presented algorithm not only has high accuracy of boundary locations, but also has good region homogeneity

相似文献/References:

[1]朱映辉 江玉珍 欧阳春娟.基于特征加权的自然纹理FCM聚类分割算法[J].计算机技术与发展,2010,(01):104.
 ZHU Ying-hui,JIANG Yu-zhen,OUYANG Chun-juan.Natural Texture Segmentation Algorithm Based on Weighted Features FCM Clustering[J].,2010,(05):104.
[2]吴长勤 段汉根.基于灰色预测的残缺图像的修复算法[J].计算机技术与发展,2010,(05):124.
 WU Chang-qin,DUAN Han-gen.An Algorithm for Image Reparation Based on Grey Prediction[J].,2010,(05):124.
[3]王兴武 章权兵 徐颜.基于SOA机场防入侵系统的研究[J].计算机技术与发展,2009,(10):152.
 WANG Xing-wu,ZHANG Ouan-bing,XU Yah.Research of Airport Anti - Intrusion System Based on SOA Architecture[J].,2009,(05):152.
[4]陈帅 钟先信 朱士永 石军锋.基于线性同余的伪随机序列图像加密[J].计算机技术与发展,2006,(04):17.
 CHEN Shuai,ZHONG Xian-xin,ZHU Shi-yong,et al.Image Encryption Through Pseudo- Random Sequence Based on Linear Congruence[J].,2006,(05):17.
[5]崔春惠 张桂玲 张大坤.图像容错技术研究[J].计算机技术与发展,2011,(03):15.
 CUI Chun-hui,ZHANG Gui-ling,ZHANG Da-kun.A Survey on Image Fault Tolerance Technology[J].,2011,(05):15.
[6]袁玲 杜启亮.细胞位姿视觉识别的研究[J].计算机技术与发展,2011,(12):89.
 YUAN Ling,DU Qi-Hang.Research on Cell's Position-Orientation Identification[J].,2011,(05):89.
[7]俞文静,张明军,王影.面向视频超分辨率重建的混合粒子群优化算法[J].计算机技术与发展,2018,28(11):75.[doi:10.3969/ j. issn.1673-629X.2018.11.017]
 YU Wen-jing,ZHANG Ming-jun,WANG Ying.A Hybrid Particle Swarm Optimization Algorithm for Image/ Video Super-resolution Reconstructio[J].,2018,28(05):75.[doi:10.3969/ j. issn.1673-629X.2018.11.017]
[8]陆兴华,王凌丰,曾世豪,等.基于神经网络学习的多姿态人脸图像识别算法[J].计算机技术与发展,2019,29(11):57.[doi:10. 3969 / j. issn. 1673-629X. 2019. 11. 012]
 LU Xing-hua,WANG Ling-feng,ZENG Shi-hao,et al.Multi-pose Face Image Recognition Algorithm Based on Neural Network Learning[J].,2019,29(05):57.[doi:10. 3969 / j. issn. 1673-629X. 2019. 11. 012]
[9]陆兴华,蔡 韬.基于 CNN 的安防监控步态特征提取研究[J].计算机技术与发展,2019,29(11):123.[doi:10. 3969 / j. issn. 1673-629X. 2019. 11. 025]
 LU Xing-hua,CAI Tao.Research on Gait Feature Extraction in Security Monitoring System Based on CNN[J].,2019,29(05):123.[doi:10. 3969 / j. issn. 1673-629X. 2019. 11. 025]

备注/Memo

备注/Memo:
河南省科技厅自然科学基金研究项目(112300410301);河南省科技厅科技攻关研究项目(112102210210);河南省教育厅自然科学基金项目(2010A510009)侯艳丽(1978-),女,河南南阳人,讲师,硕士,主要研究方向为多传感器多目标数据融合技术、图像处理和模式识别
更新日期/Last Update: 1900-01-01