[1]黄越 臧冽 聂盼盼.一种混合分类方法的研究与改进[J].计算机技术与发展,2012,(05):48-52.
 HUANG Yue,ZANG Lie,NIE Pan-pan.Research and Improvement of One Combination of Multiple Classifiers[J].,2012,(05):48-52.
点击复制

一种混合分类方法的研究与改进()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年05期
页码:
48-52
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Research and Improvement of One Combination of Multiple Classifiers
文章编号:
1673-629X(2012)05-0048-05
作者:
黄越 臧冽 聂盼盼
南京航空航天大学计算机科学与技术学院
Author(s):
HUANG Yue ZANG Lie NIE Pan-pan
College of Computer Sci. and Tech. , Nanjing University of Aeronautics and Astronautics
关键词:
神经网络贝叶斯分类支持向量机数据挖掘
Keywords:
neural network Bayes classification support vector machine data mining
分类号:
TP393
文献标志码:
A
摘要:
多分类器组合是提高识别效果的一条有效途径。根据神经网络适用于处理准确率高、非线性的样本,贝叶斯分类具有快速稳健的特征,以及支持向量机处理小样本、非线性及高维模式识别问题的优势,提出了神经网络+贝叶斯+SVM混合分类方法。该方法利用BP神经网络和Bayes分类器对测试样本进行判决,如果判决结果一致,则直接输出分类结果,如果结果不一致,引入支持向量机进行二次判决。实验结果表明,该方法所确定的分类器优于单一的分类器判决
Abstract:
The combination of multiple classifiers is one of the effective ways to improve the recognition performance. According to the function of neural network in processing high accuracy and non-linear sample, Bayes classifier with characteristics of the fast and accurate and supporting vector machine with the advantage of processing small sample, nonlinear and high dimensional pattern recognition problem,present a new combined classifier model based on neural network+Bayes+SVM. It gets the class results of test sample by BP neural network and Bayes respectively,if these two results are the same,then puts out the result as the test sample's decision class,otherwise calls SVM to get the test sample's class result. Experimental result shows that the method is better than single classifier

相似文献/References:

[1]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].,2010,(05):84.
[2]高峥 陈蜀宇 李国勇.混合入侵检测系统的研究[J].计算机技术与发展,2010,(06):148.
 GAO Zheng,CHEN Shu-yu,LI Guo-yong.Research of a Hybrid Intrusion Detection System[J].,2010,(05):148.
[3]包力伟 周俊.铸锻企业生产质量控制系统的开发[J].计算机技术与发展,2008,(04):174.
 BAO Li-wei,ZHOU Jun.Development of a Manufacture Quality Control System in Casting Company[J].,2008,(05):174.
[4]李志俊 程家兴 金奎 饶玉佳.基于样本期望训练数的BP神经网络改进研究[J].计算机技术与发展,2009,(05):103.
 LI Zhi-jun,CHENG Jia-xing,JIN Kui,et al.BP Algorithm Improvement Based on Sample Expected Training Number[J].,2009,(05):103.
[5]李龙澍 葛瑞峰 王慧萍.基于神经网络的批强化学习在Robocup中的应用[J].计算机技术与发展,2009,(07):98.
 LI Long-shu,GE Rui-feng,WANG Hui-ping.Application of Batch Reinforcement Learning Based on NN to Robocup[J].,2009,(05):98.
[6]贾志先.神经网络在空白试卷识别中的应用[J].计算机技术与发展,2009,(08):208.
 JIA Zhi-xian.Application of Neural Network in Recognization Blank Examination Paper[J].,2009,(05):208.
[7]肖宜龙 路游 亓永刚.基于神经网络的NURBS曲面重建[J].计算机技术与发展,2009,(09):65.
 XIAO Yi-long,LU You,QI Yong-gang.NURBS Surface Reconstruction Based on Neural Network[J].,2009,(05):65.
[8]蔡秋茹 罗烨 柳益君 叶飞跃.企业资信的BP神经网络评估模型研究[J].计算机技术与发展,2009,(10):117.
 CAI Qiu-ru,LUO Ye,LIU Yi-jun,et al.Research on BP Neural Network Model for Corporation Credit Rating[J].,2009,(05):117.
[9]王晓敏 刘希玉 戴芬.BP神经网络预测算法的改进及应用[J].计算机技术与发展,2009,(11):64.
 WANG Xiao-min,LIU Xi-yu,DAI Fen.Improvement and Application of BP Neural Network Forecasting Algorithm[J].,2009,(05):64.
[10]崔海青 刘希玉.基于粒子群算法的RBF网络参数优化算法[J].计算机技术与发展,2009,(12):117.
 CUI Hai-qing,LIU Xi-yu.Parameter Optimization Algorithm of RBF Neural Network Based on PSO Algorithm[J].,2009,(05):117.

备注/Memo

备注/Memo:
黄越(1987-),男,硕士研究生,研究方向为人侵检测;臧冽,副教授,研究方向为人侵检测
更新日期/Last Update: 1900-01-01