[1]张昊 陈自力 齐晓慧.基于RBF神经网络PID的无人动力伞控制[J].计算机技术与发展,2012,(02):206-209.
 ZHANG Hao,CHEN Zi-li,QI Xiao-hui.Unmanned Powered Parachute Aircraft Control Based on RBF Neural Network PID[J].,2012,(02):206-209.
点击复制

基于RBF神经网络PID的无人动力伞控制()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年02期
页码:
206-209
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Unmanned Powered Parachute Aircraft Control Based on RBF Neural Network PID
文章编号:
1673-629X(2012)02-0206-04
作者:
张昊 陈自力 齐晓慧
军械工程学院光学与电子工程系
Author(s):
ZHANG HaoCHEN Zi-liQI Xiao-hui
Department of Optical and Electrics Engineering,Ordnance Engineering College
关键词:
RBF神经网络PID控制无人动力伞
Keywords:
RBF network PIDcontrol unmanned powered parachute
分类号:
TP39
文献标志码:
A
摘要:
动力伞是一个复杂的非线性动力学对象,难以用精确的数学模型描述。对于这种具有非线性、时变和强耦合特性的综合系统,采用传统PID控制方法不能得到满意的控制效果,因此提出一种基于RBF神经网络的PID控制方法。该方法利用RBF神经网络的自学习、自适应能力自调整系统的控制参数,从而实现对PID控制器各参数的优化整定。在Mat-lab软件中的仿真结果表明,该方法可实现对动力伞有效的控制,并且与传统PID相比,具有更短的调节时间,更好的稳定性、自适应性和鲁棒性
Abstract:
Unmanned powered parachute aircraft is a complicated nonlinear dynamics object.It is difficult to describe by precise mathematical model.For the integrated system with nonlinear time-varying and strong coupling characters,since it cannot acquire the satisfied control result using the traditional PID control method,a self-turning PID control strategy based on RBF network is put forward in this paper.This method uses the ability of self-study and self-adaptability of RBF network to turn parameters of system,accordingly,realizes the setting of PID controller parameters.Simulation result in Matlab indicates that it can get satisfied control result,shorter adjusting time,better stability,better self-adaptability and robustness using this method

相似文献/References:

[1]储岳中.改进的RBF神经网络在非线性系统中的应用[J].计算机技术与发展,2008,(03):196.
 CHU Yue-zhong.Application of an Improved RBFNN in Nonlinear System[J].,2008,(02):196.
[2]刘锋 唐佳 仲红.一种基于RBF神经网络的XML文本分类方法[J].计算机技术与发展,2009,(08):34.
 LIU Feng,TANG Jia,ZHONG Hong.A Text Categorization Method Based on RBF Neural Network[J].,2009,(02):34.
[3]洪素惠 吴发成 米红.神经网络自适应PID在吹瓶机中的应用[J].计算机技术与发展,2009,(09):177.
 HONG Su-hui,WU Fa-cheng,MI Hong.Adaptive PID Controller Based on Neural Networks in Stretch Blow Molding[J].,2009,(02):177.
[4]魏华 李群 陈得宝.一种新型参数非线性模糊PID控制方法[J].计算机技术与发展,2008,(02):237.
 WEI Hua,LI Qun,CHEN De-bao.A New Designing Method of PID Control with Nonlinear Fuzzy Parameter[J].,2008,(02):237.
[5]吕克 徐夫田 舒文迪.基于神经网络的鸟撞预测模型应用研究[J].计算机技术与发展,2012,(05):90.
 LUE Ke,XU Fu-tian,SHU Wen-di.Bird-Strike Prediction Model Application and Research Based on Neural Network[J].,2012,(02):90.
[6]储兵,吴陈,杨习贝.基于RBF神经网络与粗糙集的数据挖掘算法[J].计算机技术与发展,2013,(07):87.
 CHU Bing,WU Chen,YANG Xi-bei.Data Mining Algorithm Based on RBF Neural Network and Rough Sets[J].,2013,(02):87.
[7]刘洁,李目,周少武.一种混沌混合粒子群优化RBF神经网络算法[J].计算机技术与发展,2013,(08):181.
 LIU Jie[],LI Mu[],ZHOU Shao-wu[].An Algorithm of Chaotic Hybrid Particle Swarm Optimization Based on RBF Neural Network[J].,2013,(02):181.
[8]周西峰,林莹莹,郭前岗.基于粒子群算法的PID神经网络解耦控制[J].计算机技术与发展,2013,(09):158.
 ZHOU Xi-feng,LIN Ying-ying,GUO Qian-gang.PID Neural Network Decoupling Control Based on Particle Swarm Optimization[J].,2013,(02):158.
[9]张方舟,郝庆辉,周勃,等.遗传算法的RBF神经网络在线损计算中的应用[J].计算机技术与发展,2014,24(06):192.
 ZHANG Fang-zhou,HAO Qing-hui,ZHOU B,et al.Application of RBF Neural Network of Genetic Algorithm in Calculation of Line Losses[J].,2014,24(02):192.
[10]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(02):29.

备注/Memo

备注/Memo:
国防武器装备预研基金项目(9140A25070509JB3405)张昊(1988-),男,山西临汾人,硕士研究生,主要从事无人动力伞控制研究
更新日期/Last Update: 1900-01-01