[1]杨庆 陈桂明 薛冬林.基于局部积分均值的经验模态分解改进算法[J].计算机技术与发展,2012,(02):22-24.
 YANG Qing,CHEN Gui-ming,XUE Dong-lin.Improved Algorithm for Empirical Mode Decomposition Based on Local Integral Mean[J].,2012,(02):22-24.
点击复制

基于局部积分均值的经验模态分解改进算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年02期
页码:
22-24
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Improved Algorithm for Empirical Mode Decomposition Based on Local Integral Mean
文章编号:
1673-629X(2012)02-0022-03
作者:
杨庆1 陈桂明1 薛冬林2
[1]第二炮兵工程学院装备管理工程系[2]第二炮兵96604部队
Author(s):
YANG QingCHEN Gui-mingXUE Dong-lin
[1]Dept of Equipment Management Engineering,the Second Artillery Engineering College[2]Troops No.96604
关键词:
经验模态分解局部积分均值端点效应模态混叠
Keywords:
empirical mode decomposition local integral mean end effect mode mixing
分类号:
TN911.7
文献标志码:
A
摘要:
端点效应和模态混叠现象是经验模态分解算法应用中存在的主要问题。在介绍标准经验模态分解算法的基础上,阐述了基于局部积分均值经验模态分解算法的基本原理,提出自适应的端点局部积分均值拟合线的拟合方法。改进算法通过距离相关度函数在待分解信号内部寻找与端点处信号变化趋势相关度最高的一段波形,并用此段波形的局部积分均值拟合线来重新刻画端点处的局部积分均值拟合线,将修正后的局部积分均值拟合线应用于EMD算法筛选过程中。仿真实验结果表明,改进算法有效抑制了模态混叠和端点效应现象,提高了分解的精度和可靠性
Abstract:
The end effect and mode mixing is the main problem in the application of the empirical mode decomposition(EMD) method.The principles of standard EMD algorithm and the method of empirical mode decomposition based on local integral mean are introduced,and the advanced method of empirical mode decomposition based on local integral mean is presented.The method finds the best correlative sequence in the inner data and adopts the optimum sequence to proofread the fixing line near the ends of the data,and use the proofread fixing line into the sifting process of the algorithm.The simulation results show the method is effective in restraining end effect and mode mixing

相似文献/References:

[1]张晓宇 董增寿 宋仁旺.基于EMD和改进PSO-Elman神经网络的液压故障诊断[J].计算机技术与发展,2012,(04):29.
 ZHANG Xiao-yu,DONG Zeng-shou,SONG Ren-wang.Hydraulic System Fault Diagnosis Based on EMD and Modified PSO-Elman ANN[J].,2012,(02):29.
[2]王盈 董增寿.基于EMD和M-FSVM的泵车液压系统故障诊断[J].计算机技术与发展,2012,(06):179.
 WANG Ying,DONG Zeng-shou.Pump Truck Hydraulic System Fault Diagnosis Based on EMD and M-FSVM[J].,2012,(02):179.
[3]杨斌,陈桂明,杨庆.基于标准化自协方差相关函数的EMD改进算法[J].计算机技术与发展,2013,(05):67.
 YANG Bin,CHEN Gui-ming,YANG Qing.Improved EMD Algorithm Based on Standardized Auto-covariance Correlation Function[J].,2013,(02):67.
[4]宋剑,邱晓晖. 采用支持向量回归抑制噪声的经验模态分解方法[J].计算机技术与发展,2014,24(11):122.
 SONG Jian,QIU Xiao-hui. Empirical Mode Decomposition Method Using Support Vector Regression to Suppress Noise[J].,2014,24(02):122.
[5]刘悦,王芳. 基于优化组合核极限学习机的网络流量预测[J].计算机技术与发展,2016,26(06):73.
 LIU Yue,WANG Fang. Network Flow Prediction Based on Optimization Combined Kernel Extreme Learning Machine[J].,2016,26(02):73.

备注/Memo

备注/Memo:
军队科研项目(2009046)杨庆(1983-),男,博士研究生,研究方向为机械设备故障诊断技术研究;陈桂明,教授,博士生导师,研究方向为机械设备故障诊断技术教学与研究
更新日期/Last Update: 1900-01-01