[1]邱莎[] 阿圆 王付艳 丁海燕.基于统计的中文地名自动识别研究[J].计算机技术与发展,2011,(11):35-38.
 QIU Sha,A Yuan,WANG Fu-yan,et al.Study on Automatic Recognition of Chinese Location Names Based on Statistical Method[J].,2011,(11):35-38.
点击复制

基于统计的中文地名自动识别研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年11期
页码:
35-38
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Study on Automatic Recognition of Chinese Location Names Based on Statistical Method
文章编号:
1673-629X(2011)11-0035-04
作者:
邱莎[13] 阿圆1 王付艳1 丁海燕2
[1]昆明学院信息技术学院[2]云南大学信息学院[3]复旦大学计算机科学技术学院
Author(s):
QIU Sha A Yuan WANG Fu-yan DING Hai-yan
[1]Institute of Information Technology, Kunming University[2]Institute of Information, Yunnan University[3]Institute of Computer Science Technology, Fudan University
关键词:
中文地名识别条件随机场特征模板
Keywords:
Chinese location name recognition conditional random fields(CRFs) feature template
分类号:
TP31
文献标志码:
A
摘要:
中文地名的自动识别是命名实体识别任务中难度较大的任务之一,目的是从中文文本中自动准确提取地理专用名词。文中使用统计模型中的条件随机场对中文地名的自动识别在字一级粒度进行了研究。在研究中利用条件随机场能任意添加特征的优点,合理引用了丰富的特征组合,在大规模语料上进行训练,统计获得标注序列基于特征集的条件概率分布,并采用序列标注的方式,实现中文地名的自动识别。多次闭合测试和开放测试结果Fl值为90%左右,识别效果良好
Abstract:
Chinese location name recognition is one of the difficult tasks of Chinese named entity recognition. Its task is automatic extracting geography special nouns from Chinese texts accurately. Based on one of the statistical models, the conditional random fields, discussed the task of automatic recognition of Chinese location name on the character level. To take advantage of the ability of using arbi- trary features as input in CRFs, not only reasonable feature template was structured, but also the large scale corpus was used in training. The conditional probability distribution of label sequences was computed using statistics. By sequence labeling, it implemented the automatic recognition of Chinese location name. It obtained promising results on different closed and opened test corpus with the F1 measurement value of about 90%

相似文献/References:

[1]闵华清 黄欣欣 罗荣华.基于激光和视觉信息的机器人目标跟踪方法[J].计算机技术与发展,2010,(04):113.
 MIN Hua-qing,HUANG Xin-xin,LUO Rong-hua.Robot Target Tracking Approach Based on Laser and Vision Information[J].,2010,(11):113.
[2]张春元.基于条件随机场的文本分类模型[J].计算机技术与发展,2011,(07):77.
 ZHANG Chun-yuan.Text Categorization Model Based on Conditional Random Fields[J].,2011,(11):77.
[3]楼博文,许歆艺,蔡根,等.智能信息系统中手机产品评论的情感倾向分析[J].计算机技术与发展,2013,(12):22.
 LOU Bo-wen[],XU Xin-yi[],CAI Gen[],et al.Analysis on Sentiment Orientation of Mobile Phone Product Reviews in Intelligent Information System[J].,2013,(11):22.
[4]张聪品,方滔,刘昱良.基于LSTM-CRF命名实体识别技术的研究与应用[J].计算机技术与发展,2019,29(02):106.[doi:10.3969/j.issn.1673-629X.2019.02.022]
 ZHANG Congpin,FANG Tao,LIU Yuliang.Research and Application of Named Entity Recognition Based on LSTM-CRF[J].,2019,29(11):106.[doi:10.3969/j.issn.1673-629X.2019.02.022]
[5]唐 莉,刘 臣.基于 CRF 和 HITS 算法的特征情感对提取[J].计算机技术与发展,2019,29(07):71.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 014]
 TANG Li,LIU Chen.Extraction of Feature and Sentiment Word Pair Based on Conditional Random Fields and HITS Algorithm[J].,2019,29(11):71.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 014]
[6]张泽宇,郭 斌,张太红*.基于 DCNN 的马匹图像分割算法研究[J].计算机技术与发展,2020,30(10):210.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 037]
 ZHANG Ze-yu,GUO Bin,ZHANG Tai-hong.Research on Horse Image Segmentation Algorithm Based on DCNN[J].,2020,30(11):210.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 037]
[7]陈 琛,刘小云,方玉华.融合注意力机制的电子病历命名实体识别[J].计算机技术与发展,2020,30(10):216.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 038]
 CHEN Chen,LIU Xiao-yun,FANG Yu-hua.Named Entity Recognition in Electronic Medical Record Introducing Attention Mechanisms[J].,2020,30(11):216.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 038]
[8]王 辉,潘俊辉,王浩畅,等.基于深度学习的中文语法错误诊断方法研究[J].计算机技术与发展,2020,30(11):69.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 013]
 WANG Hui,PAN Jun-hui,WANG Hao-chang,et al.Research on Chinese Grammar Error Diagnosis Method Based on Deep Learning[J].,2020,30(11):69.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 013]
[9]胡万亭,郭建英,张继永.一种基于改进 ELMO 模型的组织机构名识别方法[J].计算机技术与发展,2020,30(11):25.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 005]
 HU Wan-ting,GUO Jian-ying,ZHANG Ji-yong.An Organization Name Recognition Method Based on Improved ELMO Model[J].,2020,30(11):25.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 005]
[10]王卫红,吕红燕,曹玉辉,等.基于 BERT 的混合神经网络实体识别方法[J].计算机技术与发展,2021,31(08):100.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 017]
 WANG Wei-hong,LYU Hong-yan,CAO Yu-hui,et al.A Hybrid Neural Network Entity Recognition Method Based on BERT Model[J].,2021,31(11):100.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 017]

备注/Memo

备注/Memo:
云南省教育科研资助项目(09Y0047);昆明学院科研课题基金(2009c012)邱莎(1974-),女,云南曲靖人,硕士,讲师,复旦大学访问学者,研究方向为自然语言处理
更新日期/Last Update: 1900-01-01