[1]牛杰 钱堃.基于多尺度-多形状HOG特征的行人检测方法[J].计算机技术与发展,2011,(09):99-102.
 NIU Jie,QIAN Kun.Pedestrian Detection Based on Multi-Scale and Multi-Shape HOG Features[J].,2011,(09):99-102.
点击复制

基于多尺度-多形状HOG特征的行人检测方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年09期
页码:
99-102
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Pedestrian Detection Based on Multi-Scale and Multi-Shape HOG Features
文章编号:
1673-629X(2011)09-0099-04
作者:
牛杰1 钱堃2
[1]常州信息职业技术学院电子与电气工程学院[2]东南大学自动化学院
Author(s):
NIU JieQIAN Kun
[1]Anhui Normal University[2]School of Automation,Southeast University
关键词:
方向梯度直方图行人检测Adaboost机器学习
Keywords:
histogram of oriented gradient pedestrian detection Adaboost machine learning
分类号:
TP391.41
文献标志码:
A
摘要:
提出一种图像中人体快速自动检测方法。提取图像的多尺度-多形状方向梯度直方图(HOG)特征向量,用于描述人体的形状特征,结合Adaboost机器学习法训练级联型分类器,以加速人体的检测过程。相比较传统算法,该方法没有采用静态背景模型,也不是仅仅依赖于易受外部环境因素干扰的颜色信息,从而一定程度地适应了人体姿态变化,以及非结构化环境下常见的光照波动、背景杂乱等不良因素所带来的干扰。实验验证了该方法的准确性和较高的计算效率
Abstract:
A fast and automatic people detection method is proposed.The multi-scale and multi-shape histogram of oriented gradient(HOG) features are extracted,which serve as a powerful description of human shapes;The extracted features are then fed into a cascade of classifiers trained by Adaboost algorithm to greatly accelerate the people detection scheme.The proposed method is independent from background models as well as color information in images,which is highly unreliable due to disturbance.This method is robust against human posture variances,lightening fluctuations as well as background cluttering.Experimental results validate the favorable performance of high accuracy and computational efficiency of the proposed method

相似文献/References:

[1]赵金金,姚汉利,鲍文霞. 基于部件模型及颜色信息的行人检测[J].计算机技术与发展,2017,27(11):58.
 ZHAO Jin-jin,YAO Han-li,BAO Wen-xia. Pedestrian Detection Based on Part Model and Color Information[J].,2017,27(09):58.
[2]金壮壮,曹江涛,姬晓飞.多源信息融合的双人交互行为识别算法研究[J].计算机技术与发展,2018,28(10):32.[doi:10.3969/ j. issn.1673-629X.2018.10.007]
 JIN Zhuang-zhuang,CAO Jiang-tao,JI Xiao-fei.Research on Human Interaction Recognition Algorithm Based on Multi-source Information Fusion[J].,2018,28(09):32.[doi:10.3969/ j. issn.1673-629X.2018.10.007]
[3]邱东,刘德雨.基于模糊深度学习网络的行人检测方法[J].计算机技术与发展,2018,28(10):22.[doi:10.3969/ j. issn.1673-629X.2018.10.005]
 QIU Dong,LIU De-yu.A Pedestrian Detection Method Based on Fuzzy Depth Learning Network[J].,2018,28(09):22.[doi:10.3969/ j. issn.1673-629X.2018.10.005]
[4]韩欣欣,叶奇玲.基于 SIFT 和 HOG 特征融合的人体行为识别方法[J].计算机技术与发展,2019,29(06):71.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 015]
 HAN Xin-xin,YE Qi-ling.Human Action Recognition Based on Feature Fusion of SIFT and HOG[J].,2019,29(09):71.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 015]
[5]肖顺亮,强赞霞,刘卫光.基于 CSP 改进用于拥挤情况的行人检测算法[J].计算机技术与发展,2021,31(07):52.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 009]
 XIAO Shun-liang,QIANG Zan-xia,LIU Wei-guang.An Improved Pedestrian Detection Algorithm for Crowd Based on CSP[J].,2021,31(09):52.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 009]
[6]高纪东,王正群,夏 进.基于 HOG 特征的加权稀疏表示人脸识别算法[J].计算机技术与发展,2022,32(07):64.[doi:10. 3969 / j. issn. 1673-629X. 2022. 07. 011]
 GAO Ji-dong,WANG Zheng-qun,XIA Jin.Weighted Sparse Representation Face Recognition Algorithm Based on HOG Feature[J].,2022,32(09):64.[doi:10. 3969 / j. issn. 1673-629X. 2022. 07. 011]
[7]何 薇,陈宇拓.景区行人检测 YOLOv5-GSPE 算法模型研究与实现[J].计算机技术与发展,2023,33(09):113.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 017]
 HE Wei,CHEN Yu-tuo.Research and Implementation of YOLOv5-GSPE for Pedestrian Detection in Scenic Spots[J].,2023,33(09):113.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 017]
[8]李梦涵,熊淑华,熊文,等. 多尺度级联行人检测算法的研究与实现[J].计算机技术与发展,2014,24(08):10.
 LI Meng-han,XIONG Shu-hua,XIONG Wen,et al. Research and Realization of Pedestrian Detection Algorithm by Multi-scale Cascaded Features[J].,2014,24(09):10.

备注/Memo

备注/Memo:
江苏省现代教育技术研究2011年度技术应用重点课题(2011-R-18926)牛杰(1983-),男,江苏淮安人,讲师,硕士,研究领域为图像处理、测量控制
更新日期/Last Update: 1900-01-01