[1]路立伟 王亮 梁勇 范荣双.模拟退火算法在频率指配中的应用优化[J].计算机技术与发展,2011,(07):121-124.
 LU Li-wei,WANG Liang,LIANG Yong,et al.Optimization of Simulated Annealing in Solving Frequency Assignment Problem[J].,2011,(07):121-124.
点击复制

模拟退火算法在频率指配中的应用优化()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年07期
页码:
121-124
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Optimization of Simulated Annealing in Solving Frequency Assignment Problem
文章编号:
1673-629X(2011)07-0121-04
作者:
路立伟12 王亮1 梁勇2 范荣双1
[1]中国测绘科学研究院政府地理信息系统研究中心[2]山东农业大学信息科学与工程学院
Author(s):
LU Li-weiWANG LiangLIANG YongFAN Rong-shuang
[1]Research Center of Government GIS,Chinese Academy of Surveying and Mapping[2]School of Information Science and Engineering,Shandong Agricultural University
关键词:
局部搜索模拟退火频率指配OpenMP约束检测
Keywords:
local search simulated annealing frequency assignment OpenMP restriction check
分类号:
TP301.6
文献标志码:
A
摘要:
已知发射机坐标和可用频率,考虑同、邻频约束和人口覆盖,建立了频率指配的数学模型。即在满足同、邻频约束条件下,寻求一组频率使得每台发射机尽量指配可用频率中的最低频率(无可用频率的将不被指配),并使得人口覆盖率最高。以局部搜索算法为参照,将模拟退火算法应用到频率指配问题中,结果表明模拟退火算法的指配结果质量明显优于局部搜索算法。并针对模拟退火算法的耗时性使用OpenMP指令优化约束检测代码,在多核计算机上运行取得了很好的加速效果
Abstract:
Given coordinates and usable frequencies of transmitters,considering co-channel constraint,adjacent channel constraint and population coverage,build a mathematic model of frequency assignment.It means that with the satisfaction of co-channel constraint and adjacent channel constraint,to find a group of frequencies which make each transmitter assigned the lowest frequency selected from usable frequencies(not to assign if no usable frequencies available)and make the population coverage maximum.Took local search as reference,applied simulated annealing into frequency assignment problem,the result shows that simulated annealing is obviously better than local search.Using OpenMP instructions to optimize the restriction check code to overcome time-consuming characteristic of simulated annealing,the program achieved good performance of speedup when implemented on multicore computer

相似文献/References:

[1]狄翠萍 申闫春 刘双.大规模油藏三维显示系统关键技术的研究[J].计算机技术与发展,2010,(02):237.
 DI Cui-ping,SHEN Yan-chun,LIU Shuang.Study of Key Technologies of Large - Scale 3 - D Display System[J].,2010,(07):237.
[2]张捍东 廖天红 岑豫皖.用模拟退火思想的粒子群算法实现图像分割[J].计算机技术与发展,2010,(05):83.
 ZHANG Han-dong,LIAO Tian-hong,CEN Yu-wan.Image Segmentation Through Particle Swarm Optimization Based on Simulated Annealing[J].,2010,(07):83.
[3]金萍 王浩 宗瑜 李明楚.基于调整学习的聚类算法[J].计算机技术与发展,2009,(02):58.
 JIN Ping,WANG Hao,ZONG Yu,et al.Clustering Algorithm Based on Fine- Tuned Learning[J].,2009,(07):58.
[4]杜秀全 程家兴.基于退火进化算法的机器人足球策略研究[J].计算机技术与发展,2008,(02):101.
 DU Xiu-quan,CHENG Jia-xing.Study on Soccer Robot Strategy Based on Annealing Evolution Algorithm[J].,2008,(07):101.
[5]路景 周春艳.基于遗传算法的混合优化策略研究[J].计算机技术与发展,2007,(03):144.
 LU Jing,ZHOU Chun-yan.Study of Hybrid Optimization Strategy Based on Genetic Algorithm[J].,2007,(07):144.
[6]王京 于舒娟.模拟退火混沌粒子群算法的盲检测[J].计算机技术与发展,2011,(01):35.
 WANG Jing,YU Shu-juan.Blind Detection Based on Simulated Annealing Chaotic Particle Swarm Optimization[J].,2011,(07):35.
[7]李龙澍 曹珣 王凡.基于模拟退火遗传算法的测试数据生成研究[J].计算机技术与发展,2011,(04):85.
 LI Long-shu,CAO Xun,WANG Fan.Test Data Generation Using Simulated Annealing Genetic Algorithm[J].,2011,(07):85.
[8]朱绍伟 徐夫田 滕兆明.一种改进蚁群算法求解最短路径的应用[J].计算机技术与发展,2011,(07):202.
 ZHU Shao-wei,XU Fu-tian,TENG Zhao-ming.Application of Improvement Ants Algorithm in Solving Shortest Path[J].,2011,(07):202.
[9]胡建悦 严洪森 刘楠楠.基于模拟退火粒子群算法的AHP排序权值计算[J].计算机技术与发展,2012,(06):14.
 HU Jian-yue,YAN Hong-sen,LIU Nan-nan.Computing Rank Weights in AHP of Simulated Annealing-particle Swarm Optimization Algorithm[J].,2012,(07):14.
[10]刘洁,李目,周少武.一种混沌混合粒子群优化RBF神经网络算法[J].计算机技术与发展,2013,(08):181.
 LIU Jie[],LI Mu[],ZHOU Shao-wu[].An Algorithm of Chaotic Hybrid Particle Swarm Optimization Based on RBF Neural Network[J].,2013,(07):181.

备注/Memo

备注/Memo:
国家质量监督检验检疫总局科技公益专项(200910245)路立伟(1985-),男,硕士,研究方向为地理信息系统开发与应用、频率指配算法;王亮,硕士,研究员,研究方向为电子政务、政府地理信息系统设计开发和应用;梁勇,博士,教授,研究方向为数字技术与应用
更新日期/Last Update: 1900-01-01