[1]闫志敏 刘希玉.流形学习及其算法研究[J].计算机技术与发展,2011,(05):99-102.
 YAN Zhi-min,LIU Xi-yu.Manifold Learning and Research of Algorithm[J].,2011,(05):99-102.
点击复制

流形学习及其算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年05期
页码:
99-102
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Manifold Learning and Research of Algorithm
文章编号:
1673-629X(2011)05-0099-04
作者:
闫志敏1 刘希玉2
[1]山东师范大学信息科学与工程学院[2]山东师范大学管理与经济学院
Author(s):
YAN Zhi-min LIU Xi-yu
[1]School of Information Science and Engineering, Shandong Normal University[2]School of Management and Economics, Shandong Normal University
关键词:
流形学习等度规映射局部线性嵌套拉普拉斯特征映射局部切空间排列算法
Keywords:
Manifold learning isometric mapping locally linear embedding Laplacian eigenmapslocal tangent space alignment
分类号:
TP301.6 O186
文献标志码:
A
摘要:
流形学习作为微分儿何的一个分支,旨在找出嵌入在高维数据中的低维流肜结构,它的大部分算法都是用来进行维数约简的,也有一部分用来进行数据可视化的。月前,流形学习渐渐成为机器学习及模式识别领域中的一个研究热点。介绍了流形以及流彤学习的撼本概念,针对流形学习中的几种学习算法,讨论了它们符内的特点并分析了它们的小足之处,以便在以后的流形学习研究中能够更好地运用这些算法对数据进行分析以及降维
Abstract:
Manifold learning is a branch of differential geometry, it will find embedded in high dimensional data in low dimensional manifold structure, which most of the algorithms are also used for dimensionality reduction, and some are also used for data visualization. Currently, Manifold learning gradually becomes a hotspot in the field of machine learning and pattern recognition. First, described the basic concepts of the manifold and manifold learning, then discussed the respective characteristics of meadfold leatning algorithms and analysed their shortcomings. You can use these algorithnas better for data analysis and dimensionality reduction in the future of Manifold learning study

相似文献/References:

[1]王健,韩志艳.鲁棒主元分析及在故障诊断中的应用[J].计算机技术与发展,2013,(06):79.
 WANG Jian[],HAN Zhi-yan[].Robust Principal Component Analysis and Its Application in Fault Diagnosis[J].,2013,(05):79.
[2]吴飞,荆晓远,李文倩,等.基于流形学习的整体正交稀疏保留鉴别分析[J].计算机技术与发展,2014,24(06):63.
 WU Fei,JING Xiao-yuan,LI Wen-qian,et al.Analysis of Preserving Discriminant of Holistic Orthogonal Sparsity Based on Manifold Learning[J].,2014,24(05):63.
[3]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(05):34.
[4]凌若冰[],荆晓远[],吴飞[],等. 基于流形学习的正交稀疏保留投影鉴别分析[J].计算机技术与发展,2015,25(01):66.
 LING Ruo-bing[],JING Xiao-yuan[],WU Fei[],et al. Orthogonal Sparsity Preserving Discriminant Analysis Based on Manifold Learning[J].,2015,25(05):66.
[5]刘丹霞,干宗良,杨文峰. 基于相似性约束的人脸超分辨率重建算法[J].计算机技术与发展,2015,25(08):58.
 LIU Dan-xia,GAN Zong-liang,YANG Wen-feng. A Face Super-resolution Reconstruction Algorithm Based on Similarity Constraints[J].,2015,25(05):58.
[6]徐胜超.流形学习降维算法中一种新动态邻域选择方法[J].计算机技术与发展,2022,32(01):85.[doi:10. 3969 / j. issn. 1673-629X. 2022. 01. 015]
 XU Sheng-chao.A Dynamic Neighborhood Selection Approach for ManifoldLearning Dimensionality Reduction Algorithm[J].,2022,32(05):85.[doi:10. 3969 / j. issn. 1673-629X. 2022. 01. 015]
[7]杨秋颖,翁小清.基于 LLE 和高斯混合模型的时间序列聚类[J].计算机技术与发展,2022,32(08):33.[doi:10. 3969 / j. issn. 1673-629X. 2022. 08. 006]
 YANG Qiu-ying,WENG Xiao-qing.Time Series Clustering Based on LLE and Gaussian Mixture Model[J].,2022,32(05):33.[doi:10. 3969 / j. issn. 1673-629X. 2022. 08. 006]
[8]李燕燕,闫德勤.一种优化的近邻保持嵌入降维算法研究[J].计算机技术与发展,2023,33(06):28.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 005]
 LI Yan-yan,YAN De-qin.Research on an Optimized Nearest Neighbor Preserving Embedding Algorithm for Dimensionality Reduction[J].,2023,33(05):28.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 005]

备注/Memo

备注/Memo:
国家自然科学基金重大项目(608730581;山东省自然科学基金重大项目(Z2007G03)闫志敏(1984-),女,倾士研究生,研究办向为数据挖掘与流形学习;刘希玉,"泰山学者",教授,博士生导师,研究方向为数据挖掘与人工智能
更新日期/Last Update: 1900-01-01