[1]方洁.基于非抽样Contourlet变换的最佳软阈值图像去噪[J].计算机技术与发展,2011,(02):102-104.
 FANG Jie.Image Denoising Based on Nonsubsampled Contourlet Transform and Best Soft Threshold[J].,2011,(02):102-104.
点击复制

基于非抽样Contourlet变换的最佳软阈值图像去噪()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年02期
页码:
102-104
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Image Denoising Based on Nonsubsampled Contourlet Transform and Best Soft Threshold
文章编号:
1673-629X(2011)02-0102-03
作者:
方洁
安徽大学计算机教学部
Author(s):
FANG Jie
Computer Studies Department,Anhui University
关键词:
非抽样Contourlet变换最佳软阈值图像去噪
Keywords:
nonsubsampled Contourlet transform best soft threshold image denoising
分类号:
TN911.73
文献标志码:
A
摘要:
研究了小波变换在图像处理中的缺陷,以及Contourlet变换在图像处理中产生伪Gibbs失真的原因。为了在多尺度分析框架下改进图像去噪的效果,提出了一种基于非抽样Contourlet变换的图像去噪算法,利用非抽样Contourlet变换的多尺度多方向性以及平移不变性,对加噪图像进行非抽样Contourlet变换得到变换系数,然后对变换系数采用分层最佳软阈值处理,最后将其反变换得到去噪后的图像。实验结果表明,与Contourlet变换图像去噪算法相比,该算法可以达到更好的效果
Abstract:
Disadvantages of wavelet and pseudo-Gibbbs phenomenon produced by the Contourlet transform in image processing are studied.For improving the effect of image denoising in multi-scale,an algorithm for image denoising based on the nonsubsampled Contourlet transform and best soft threshold is proposed.The coefficients are obtained by image decomposition using the nonsubsampled Contourlet transform,which is of multi-scale and multi-direction and shift-invariant.The coefficients are disposed with an algorithm of the level best soft threshold.Denoised image is obtained by the reconstruction of the coefficients.Compared with other algorithms,this algorithm can get better effect

相似文献/References:

[1]冯太平 闫仁武.基于非抽样Contourlet变换的多聚焦图像融合算法[J].计算机技术与发展,2012,(02):57.
 FENG Tai-ping,YAN Ren-wu.Multi-Focus Image Fusion Algorithm Based on Nonsubsampled Contourlet Transform[J].,2012,(02):57.

备注/Memo

备注/Memo:
国家自然科学基金(60772121)方洁(1983-),女,安徽铜陵人,助教,硕士,研究方向为图像信息处理
更新日期/Last Update: 1900-01-01