[1]邵昌昇 楼巍 严利民.高维数据中的相似性度量算法的改进[J].计算机技术与发展,2011,(02):1-4.
 SHAO Chang-sheng,LOU Wei,YAN Li-min.Optimization of Algorithm of Similarity Measurement in High-Dimensional Data[J].,2011,(02):1-4.
点击复制

高维数据中的相似性度量算法的改进()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年02期
页码:
1-4
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Optimization of Algorithm of Similarity Measurement in High-Dimensional Data
文章编号:
1673-629X(2011)02-0001-04
作者:
邵昌昇 楼巍 严利民
上海大学机电工程与自动化学院
Author(s):
SHAO Chang-shengLOU WeiYAN Li-min
School of Mechanical & Electronics Engineering and Automation,Shanghai University
关键词:
数据挖掘高维数据相似性度量
Keywords:
data mining high-dimensional data similarity-measurement
分类号:
TP301.6
文献标志码:
A
摘要:
高维数据之间的相似性度量问题是高维空间数据挖掘中所面临的问题之一。为了有效解决高维效应给相似性度量带来的种种问题,首先分析传统相似性度量算法,得出其局限性。再通过对传统度量算法进行改进,提出新的Close函数,以弥补传统相似性度量算法应用在高维空间时的不足。提出Close函数后,将其与几种传统的相似性度量算法作比较,得出新算法在高维空间相似性度量方面的优越性。文中最后用Matlab对该函数做了定量分析,实验证明该函数在高维空间中能有效避免噪声和维灾效应的影响
Abstract:
The problem of similarity measurement between high dimensional data is one of the problems high-dimensional data mining faces.In order to solve the problems of high-dimensional similarity measurement,analysis of traditional algorithms are made at first to obtain limitation.A new function Close() is presented based on the improvement of traditional algorithm to make up for the inadequate of traditional algorithm used in high-dimensional space.Advantages of the new function are obvious in high-dimensional similarity measurement after the comparison between Close() and tradition algorithms are made.Quantitative analysis of function Close() is made with Matlab and experiments prove that this function can avoid the affects of noise and the curse of high-dimension

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(02):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(02):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(02):235.
[4]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(02):114.
[5]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(02):229.
[6]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(02):93.
[7]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(02):105.
[8]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(02):84.
[9]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(02):109.
[10]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(02):113.

备注/Memo

备注/Memo:
上海市(科委)“科技创新行动计划”非政府间国际科技合作项目(09530708600)邵昌昇(1986-),男,硕士研究生,研究方向为数据挖掘;楼巍,副教授,从事数据挖掘的研究
更新日期/Last Update: 1900-01-01