[1]贾瑞玉 宁再早 耿锦威 查丰.基于佳点集遗传算法的特征选择方法[J].计算机技术与发展,2011,(01):50-52.
 JIA Rui-yu,NING Zai-zao,GENG Jin-wei,et al.Feature Selection Method Based on Good Point-Set Genetic Algorithm[J].,2011,(01):50-52.
点击复制

基于佳点集遗传算法的特征选择方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年01期
页码:
50-52
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Feature Selection Method Based on Good Point-Set Genetic Algorithm
文章编号:
1673-629X(2011)01-0050-03
作者:
贾瑞玉 宁再早 耿锦威 查丰
安徽大学计算机科学与技术学院
Author(s):
JIA Rui-yu NING Zai-zao GENG Jin-wei ZHA Feng
School of Computer Science and Technology, Anhui University
关键词:
K最近邻算法特征选择佳点集遗传算法
Keywords:
K-nearest neighbor algorithm feature selection good point-set genetic algolithm
分类号:
TP301.6
文献标志码:
A
摘要:
针对特征选择中降维效果与分类精度间的矛盾,通过分析传统的特征选择方法中的优点和不足,结合佳点集遗传算法的思想和K最近邻简单有效的分类特性,提出了基于佳点集遗传算法的特征选择方法。该算法对特征子集采用佳点集遗传算法进行随机搜索,并采用K近邻的分类错误率作为评价指标.淘汰不好的特征子集,保存较优的特征子集。通过实验比较看出,该算法可以有效地找出具有较高分类精度的特征子集,降维效果良好,具有较好的特征子集选择能力
Abstract:
To address the contradiction between the dimension reduction for feature selection and the precision of classification, by analyzing the strengths and weaknesses of the traditional feature selection method, combines the idea of good point-set genetic algorithm and the simple and effective features of K nearest neighbor classification ,presents a new feature selection method based on good point set genetic algorithms. Through a random search of the feature subset with the good point-set genetic algorithm, and using K nearest neighbor classification error rate as the evaluation index, eliminate the bad feature subset, save the optimum feature subset. It can be seen through the comparison experiments that the algorithm can effectively find out those feature subset which has high classification accuracy, and the effect of dimension reduction is good, these show that the algorithm has the better ability to select feature subset

相似文献/References:

[1]刘利 何先平 袁文亮.股票趋势预测中Wrapper方法的研究与应用[J].计算机技术与发展,2010,(01):209.
 LIU Li,HE Xian-ping,YUAN Wen-liang.Research and Application of Wrapper Approach to Stock Trend Prediction[J].,2010,(01):209.
[2]黄炜 黄志华.一种基于遗传算法和SVM的特征选择[J].计算机技术与发展,2010,(06):21.
 HUANG Wei,HUANG Zhi-hua.Feature Selection Based on Genetic Algorithm and SVM[J].,2010,(01):21.
[3]张家柏 王小玲.基于聚类和二进制PSO的特征选择[J].计算机技术与发展,2010,(06):25.
 ZHANG Jia-bai,WANG Xiao-ling.A Novel Algorithm Based on K-Means Clustering and Binary Particle Swarm Optimization[J].,2010,(01):25.
[4]冯甲策 叶明 王惠文.基于Gram—Schmidt过程的支持向量机降维方法[J].计算机技术与发展,2009,(11):7.
 FENG Jia-ce,YE Ming,WANG Hui-wen.Dimension Reduction Method of Support Vector Machine Based on Gram- Schmidt Process[J].,2009,(01):7.
[5]林伟 柳荣其 徐熙.邮件过滤中一种改进的特征选择方法研究[J].计算机技术与发展,2009,(01):84.
 LIN Wei,LIU Rong-qi,XU Xi.Improvement of Feature Selection Algorithm in Spam Filtering[J].,2009,(01):84.
[6]刘毅 张月琳.基于Agent的邮件过滤与个性化分类系统设计[J].计算机技术与发展,2009,(02):66.
 LIU Yi,ZHANG Yue-lin.Design of a Mail Filter and Personalized Classification System Based on Agent[J].,2009,(01):66.
[7]陈素萍 谢丽聪.一种文本特征选择方法的研究[J].计算机技术与发展,2009,(02):112.
 CHEN Su-ping,XIE Li-cong.Research on Document Feature Selection[J].,2009,(01):112.
[8]段震 王倩倩 张燕平 张铃.覆盖算法下文本分类特征选择的研究[J].计算机技术与发展,2008,(11):29.
 DUAN Zhen,WANG Qian-qian,ZHANG Yan-ping,et al.Study on Feature Selection of Text Classification in Cross Cover Algorithm[J].,2008,(01):29.
[9]王希雷.基于Rough集理论的车牌汉字特征提取[J].计算机技术与发展,2007,(06):26.
 WANG Xi-lei.Car Plate Chinese Character Feature Extraction Based on Rough Set Theory[J].,2007,(01):26.
[10]董梅 胡学钢.基于多特征选择的中文文本分类[J].计算机技术与发展,2007,(07):117.
 DONG Mei,HU Xue-gang.Text Categorization Based on Multiple Features Selection[J].,2007,(01):117.

备注/Memo

备注/Memo:
安徽省高等学校省级自然科学基金(KJ2008B092)贾瑞玉(1965-),女,副教授,研究方向为计算机图形学、数据挖掘、人工智能
更新日期/Last Update: 1900-01-01