[1]向昌盛 周子英.支持向量分类机的参数选择方法研究[J].计算机技术与发展,2010,(09):94-97.
 XIANG Chang-sheng,ZHOU Zi-ying.Parameters Selection Method for Support Vector Classification[J].,2010,(09):94-97.
点击复制

支持向量分类机的参数选择方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2010年09期
页码:
94-97
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Parameters Selection Method for Support Vector Classification
文章编号:
1673-629X(2010)09-0094-04
作者:
向昌盛1 周子英2
[1]湖南农业大学东方科技学院[2]湖南农业大学资环学院
Author(s):
XIANG Chang-shengZHOU Zi-ying
[1]Orient Science & Technology College of Hunan Agricultural University[2]College of Resources & Environment of Hunan Agricultural University
关键词:
支持向量分类机深度优先搜索核函数交叉验证
Keywords:
support vector classification depth first search kernel function cross-validation
分类号:
TP181
文献标志码:
A
摘要:
支持向量分类机(Support Vector Classification,SVC)的参数选择一直缺乏一种通用、完善的方法,很大程度上限制了它的应用。为解决SVC参数选择的难题,提出了一种基于启发式深度优先搜索(Heuristic Depth-first Search,HDFS)的SVC参数自动寻优方法。该方法将10-fold交叉验证的最大识别率作为目标,利用HDFS算法进行SVC参数寻优,减少了SVC的训练时间,提高了分类的精度,从而确保了SVC参数选择的准确性。将该算法用于3个基准数据集的仿真实验,结
Abstract:
There have been no perfect algorithms for the selection of the optimal parameters of support vector classification(SVC),therefore,the applications of SVC are limite.In order to get optimal SVM parameter,a parameter selection method for SVC based on heuristic depth-first search(HDFS) is proposed in this paper.In this method,the ten-fold cross-validation recognition rate is used as the classification objection and HDFS is used for parameter selection,which can reduce the train time,improve the precision of SVC,and insure the accuracy of parameter selection.Results on 3 benchmark datasets show that the new method not only can assure the classification precision but also can reduce training time markedly.The new method has certain practical application significance

相似文献/References:

[1]许荣斌 谢莹 吴建国.基于化合物库测试的gSpan算法[J].计算机技术与发展,2007,(10):58.
 XU Rong-bin,XIE Ying,WU Jian-guo.The gSpan Algorithm Based on Compound- Library Testing[J].,2007,(09):58.
[2]赵礼峰 盂晓婉.基于深度优先的一种网络最大流求解法[J].计算机技术与发展,2012,(10):161.
 ZHAO Li-feng,MENG Xiao-wan.An Algorithm for Solving Maximum Flow Based on Depth First Search[J].,2012,(09):161.

备注/Memo

备注/Memo:
教育部新世纪优秀人才支持计划(NCET-07-0711)向昌盛(1971-),男,湖南怀化人,高级讲师,博士,研究方向为人工智能和模式识别
更新日期/Last Update: 1900-01-01