[1]王刚 王本年.基于FNN与GA相融合的数据挖掘方法研究[J].计算机技术与发展,2008,(02):119-121.
 WANG Gang,WANG Ben-nian.Data Mining Study Based on Fuzzy Neural Networks and Genetic Algorithms[J].,2008,(02):119-121.
点击复制

基于FNN与GA相融合的数据挖掘方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2008年02期
页码:
119-121
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Data Mining Study Based on Fuzzy Neural Networks and Genetic Algorithms
文章编号:
1673-629X(2008)02-0119-03
作者:
王刚 王本年
铜陵学院计算机系
Author(s):
WANG GangWANG Ben-nian
Department of Computer Science,Tongling College
关键词:
数据挖掘模糊神经网络遗传算法隶属函数规则剪枝
Keywords:
data mining fuzzy neural network genetic algorithm membexship function rule pruning
分类号:
TP311
文献标志码:
A
摘要:
模糊神经网络即具有输入信号是模糊量的神经网络,是模糊系统与神经网络相结合的产物,汇聚了二者的优点;遗传算法是一种自适应全局优化概率搜索算法。研究了基于模糊神经网络与遗传算法相融合的一种算法,在应用模糊神经网络进行数据挖掘前,应用遗传算法完成隶属函数的训练,以便更好地进行模糊神经网络学习;经过模糊神经网络学习后,提取相关规则,再次应用遗传算法,进行规则剪枝,提高数据挖掘效率。实验表明,与传统方法相比,该方法能够更快速、更加准确地进行数据挖掘,提取更精确的推理规则
Abstract:
With fuzzy input signals, fuzzy neural network is a combination of fuzzy system and neural network. Therefore, it asemhles the advantages of them. Genetic algorithm can adapt to the overall situation and better probability seeking automatically. Based on

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(02):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(02):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(02):235.
[4]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(02):114.
[5]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(02):229.
[6]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(02):93.
[7]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(02):105.
[8]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(02):84.
[9]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(02):109.
[10]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(02):113.

备注/Memo

备注/Memo:
安徽省自然科学研究项目(KJ20078382ZC)王刚(1975-),男,安徽桐城人,讲师,硕士,研究方向为数据挖掘、神经计算等;王本年,教授,博士,硕士生导师,研究方向为人工智能、机器学习,多Agent理论等
更新日期/Last Update: 1900-01-01