[1]胡蓉.多输出支持向量回归及其在股指预测中的应用[J].计算机技术与发展,2007,(10):226-229.
 HE Rong.Application of Multi - Output Support Vector Regression in Stock Market Index Forecasting[J].,2007,(10):226-229.
点击复制

多输出支持向量回归及其在股指预测中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2007年10期
页码:
226-229
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Application of Multi - Output Support Vector Regression in Stock Market Index Forecasting
文章编号:
1673-629X(2007)10-0226-04
作者:
胡蓉
广东金融学院应用数学系
Author(s):
HE Rong
Department of Applied Mathematics, Guangdong University of Finance
关键词:
多输出支持向量机回归算法时间序列股票指数预测
Keywords:
multi - output support Vector regression time series stock market index forecasting
分类号:
TP18
文献标志码:
A
摘要:
为了解决多输出回归问题,提出了一种新的多输出支持向量回归算法。给出了定义在超球上的损失函数,并将训练SVM转化为迭代解线性方程组,在求解过程中采用边计算边使矩阵降阶的方法,加快了运算速度。建立了该算法应用于股指预测的模型,对上证综合指数的建模与预测表明:与单输出支持向量回归算法建立的模型相比,该算法具有更好的整体预测精度和抗噪性能,是对证券市场进行分析和预测的一种可行而有效的方法
Abstract:
A new approach is proposed for multi- output SVR, in which a hyper-spherical insensitive function is defined around the estimate instead of the hyper - cubical insensitive function. And nse an iterative procedure to obtain the desired solution while the regular SVR achieves it by relying a quadratic programming. Can get SV directly and can't have to find the sparse matrix, which accelerate the operation. And it is applied to the training of the index - forecasting model of stock market. The results of Shanghai Stock Market index forecasting show that it can get higher whole precision and enhanced capability of anti - noise by considering the correlativity of each output

相似文献/References:

[1]赵伟 梁循.互联网金融信息量与收益率波动关联研究[J].计算机技术与发展,2009,(12):1.
 ZHAO Wei,LIANG Xun.Research on Relationship Between Internet Financial Information and Fluctuation of Price - Earnings[J].,2009,(10):1.
[2]张虹 赵兵 钟华.基于小波多尺度的网络论坛话题热度趋势预测[J].计算机技术与发展,2009,(04):76.
 ZHANG Hong,ZHAO Bing,ZHONG Hua.Hot Trend Prediction of Network Forum Topic Based on Wavelet Multi - Resolution Analysis[J].,2009,(10):76.
[3]常毅 王加阳.时态信息系统转换方法研究[J].计算机技术与发展,2008,(07):15.
 CHANG Yi,WANG Jia-yang.Research on Method of Translating TIS to IS[J].,2008,(10):15.
[4]施尧 赵勇 杨雪洁 赵妹 张燕平 关有训 王克强.基于覆盖算法的大气质量预测[J].计算机技术与发展,2008,(07):190.
 SHI Yao,ZHAO Yong,YANG Xue-jie,et al.Application of Covering Algorithm to Prediction of Air Quality[J].,2008,(10):190.
[5]何星星 孙德山.模糊神经网络与SARIMA结合的时间序列预测模型[J].计算机技术与发展,2008,(08):61.
 HE Xing-xing,SUN De-shan.A Time Series Forecasting Model Using a Hybrid Fuzzy Neural Network and SARIMA[J].,2008,(10):61.
[6]兰妥 江弋 刘光生.基于Sas的时间序列缺失值处理方法比较[J].计算机技术与发展,2008,(10):43.
 LAN Tuo,JIANG Yi,LIU Guang-sheng.Comparison of Methods on Time Series' Missing Value Based on Sas[J].,2008,(10):43.
[7]查春生 倪志伟 倪丽萍 公维峰.基于相空间重构的股价时间序列相关性分析[J].计算机技术与发展,2010,(08):17.
 ZHA Chun-sheng,NI Zhi-wei,NI Li-ping,et al.Correlations Analysis Between Stock Index Time Serials Based on Reconstructed Phase Space[J].,2010,(10):17.
[8]贾瑞玉 王亮 王会颖.二维CVVT方法在时间序列分析中的应用研究[J].计算机技术与发展,2007,(05):160.
 JIA Rui-yu,WANG Liang,WANG Hui-ying.Research for Applications of 2D - CWT Approach in Time Series Analysis[J].,2007,(10):160.
[9]张诚 郑诚.基于时间的模糊关联规则挖掘[J].计算机技术与发展,2007,(07):60.
 ZHANG Cheng,ZHENG Cheng.Fuzzy Association Rules Mining over Time[J].,2007,(10):60.
[10]张军 马志民.基于时间序列的相似子模式发现算法[J].计算机技术与发展,2006,(01):140.
 ZHANG Jun,MA Zhi-min.An Algorithm of Finding Similar Subpattern Based on Time Series[J].,2006,(10):140.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(10471045,60433020);广东省自然科学基金资助项目(970472,000463,04020079);广东省科技攻关项目(2005810101010).胡蓉(1980-),女,湖南衡阳人,硕士,研究方向为数理统计与经济信息处理
更新日期/Last Update: 1900-01-01